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Summary 
 
Preserving amplitudes in converted wave prestack migration is important for subsequent AVO processing and interpretation. However, 
it has not received as much attention as amplitude preservation for P wave migration. In this paper, we derive common offset true 
amplitude weight functions in a v(z) medium for two and one half, and three dimensional converted wave Kirchhoff migration. The 
weight formulas are then simplified into the terms invovling travel time, ray path and velocity functions for efficient computation. The 
simplified weight functions are also examined with numeric modeling data for depth migration, which demonstrated well-controlled 
amplitude behavior in offset and depth.  
 
Introduction 
 
As multi component land and OBC data acquisition become more widely available, converted wave prestack migration is becoming a 
more routine process in seismic exploration and development. Since there are unavoidable topographic variations in land data and 
rough sea floors in OBC experiments, converted wave prestack Kirchhoff migration is still an important technique in prestack imaging. 
Besides, converted wave data contain additional information about velocities (Vp and Vs) and other rock properties. Especially, they 
tend to be more sensitive to the variations of anisotropic parameters than P waves  (Jin, 2003). Extracting this information from 
converted wave sections by means of PS AVO, joint PP/PS inversion, and other interpretive processing has attracted some attention; 
in addition it has placed a critical requirement for preservation of amplitude information in processes such as prestack migration. For 
the single mode case, Bleistein (1987) developed a full range of theoretical formulas for two, two and one half, and three dimensional 
Kirchhoff migration. Several authors (Schleicher et al, 1993,  Hanitzsch 1997, and Bleistein et al 2001) also presented “true amplitude” 
Kirchhoff migration weight functions. Since their weight functions involve square roots, numerical derivatives, and/or ray quantities, 
direct implementations are computational expensive. Dellinger et al (2000) first suggested a simplified two and one half dimensional 
weight function for constant velocity. Zhang et al  (2000) then presented exact weight functions for two, two and one half, and three 
dimensional common shot, common receiver and common offset Kirchhoff migration with greatly simplified implementation formulas 
for a v(z) medium. However, for the multi-mode case, few papers address the true amplitude issue for prestack Kirchhoff migration 
because of complications due to asymmetric ray paths.    
 
In this paper, we take 3D as an example and present a true amplitude weight function in a v(z) medium for common offset Kirchhoff 
migration, then follow Zhang’s method (2000) to simplify the weight functions to reduce the computational load. The 2.5 D weighting 
function can be obtained following the same procedure. Our migration weight functions are then investigated with numerical model 
data for both 2.5 D and 3D cases.  
 
Theory and method 
 
According to Bleistein et al (2001), in the frequency domain a 3D prestack Kirchhoff migration can be presented as 
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coordinates.  The Beylkin determinant is given by                                                                          
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                                                                                                            Figure 1, the scattering angles for PS wave. 
 
 
For different configurations, common shot, common receiver and common offset, the weight functions are different. In this paper we 
take the common offset case as an example, since it is a combination of common shot and common receiver cases. 
 
 In the single mode v(z) medium for common offset configuration , we have (Zhang et al , 2000) 
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angle between a specular ray pair for the single mode, will be no longer hold for converted waves. Since for converted waves, the 
specular source and receiver pair travels with P-wave velocity down and S-wave velocity up (see Figure 1), the above relationship 
must be changed to  

                                 ,  

where γ =Vp/Vs. The Beylkin determinant also becomes more complicated than the single mode case. In a v(z) medium for converted 

waves it is given as:  

                                    
where                                                                          
             

                                      . 
Here σp and ψp are P wave in-plane and out-of-plane geometrical spreading terms. σs and ψs are defined similarly for the S-wave  
parameters. To compute the migration weight using this formula directly is very expensive. Zhang et al. (2000) introduced a 
simplification method to approximate the weight function for the single mode case in order to reduce the computational load,  and 
demonstrated that the simplified weights produced comparable results to analytic solutions. Here, we follow the same practise and
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simplify the above weight function for converted wave migration. The simplified version is much more efficient to compute since it only 
involves travel time, velocities and ray paths, all of which can be stored in the travel time tables and calculated on a  coarse grid and 
interpolated to a finer migration grid. Following the same procedure we have also derived a migration weight function for the 2.5D 
case of a v(z) medium. The above method can be easily extented to an anisotropic medium, since the required information to 
calculate weight functions is all carried in the travel time tables and velocities. The program is implemented on PC clusters, and we 
have observed no significant additional computation time compared with the conventional kinematic converted wave prestack 
Kirchhoff migration.  
 
Numerical modeling examples 
 
In order to verify our amplitude weights, we created a 3D numerical model data set, which has four flat events at depths of 1km, 
1.5km, 2km and 2.5km. To be able to use analytic formulas to generate synthetic converted-wave data with correct amplitudes 
including geometric spreading, we assume that  the velocities are constant at Vp=3000m/s and Vs=2000m/s, the reflectivities are due 
to density changes, and the four events at different depths have the same reflectivities. Migration attempts to recover all the 
amplitudes. Therefore, after migration we should produce an image with four reflectors having the same ampltiudes at all the depths.  
 

                                        
                                                              (a)                                                                                         (b) 
                                  
                 Figure 2.  (a) Converted wave migrated section of a 3D synthetic model with four reflections at depths of 1.0, 
                                 1.5, 2.0 and 2.5km, (b) the peak amplitudes picked from the four reflections in the left section. 
 
Figure 2a shows the converted wave migrated section. From the migrated image we can see that all the reflections have 
demonstrated almost uniform amplitudes. To check the details of the amplitudes we have picked peak amplitudes for all four events at 
different depths and ploted them in Figure 2b. Apart from edge effects and some jitter caused by interference with artifacts and slightly 
uneven fold in the geometry for each depth at each converted wave image point (remember, unlike the single mode case, the 
converted wave imaging point varies along the depth for each location), the migrated image shows well controlled amplitude behavior 
and all the four reflections have amplitudes in the range of  20 to 21.  
 
Since 2.5D ray theory and migration characterize in plane propagation of wave form from a point source in 3D, they more closely 
represent reality than the 2D in plane propagation that does not recognize the out of plane geometrical spreading of waves. 
Therefore, we have implemented the 2.5D method for our 2D migration. To see which weight function preserves amplitude better (2D 
or 2.5D), a synthetic model of two reflections of the same reflectivities was created with one flat event at 1500 meters and another 15 
degree dipping event. Results are shown in Figure 3. Comparing the common image gathers at image point  230 for 2D and 2.5D 
(see Figure 3b and 3c), we can see that across the offset range 0 to 3000m for the flat event at 1500m depth both 2D and 2.5D 
weights display well controlled amplitudes. However, for the dipping event between 2100m and 2200m at the same image location, 
the 2.5D amplitude weight properly recovers the amplitude loss during propagation, and displays consistent amplitudes compared 
with the flat event (see Figure 3b). The same amplitude behavior can be observed in the near offset migrated section in Figure 3a for 
2.5D weight. There is obvious amplitude decay compared with the flat event for 2D weight due to failure to recover out of plane 
energy for the dipping event (see Figure 3c).   
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                                                                       (a)                                                       (b)                                   (c) 
 
         Figure 3. Amplitude comparison for 2D and 2.5D converted wave migration weight functions. (a) 2.5D weight migrated section  
                       at offset 400m with two event, one flat and one with 15 degree dip, (b) common image gather at ccp 230 using  
                       2.5D amplitude weight, (c) common  image gather at ccp 230 using 2D amplitude weight. 
 
 
Conclusions 
 
We have presented true amplitude weight functions for converted wave common offset prestack Kirchhoff migration. In our 
implementation, the simplified versions demonstrate negligible computational cost over that of  conventional migration. The numerical 
modeling tests have shown well controlled amplitude behavior that successfully recovers amplitudes along depth and offset for both 
2.5D and 3D cases. 
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