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Abstract 
 
Two complementary solution strategies to the least-squares imaging problem with sparseness & continuity continuity constraints are 
proposed. The applied formalism explores the sparseness of curvelets coefficients of the reflectivity and their invariance under the 
demigration-migration operator. We achieve the solution by jointly minimizing a weighted l1-norm on the curvelet coefficients and an 
anisotropic difussion or total variation norm on the imaged reflectivity model. The l1-norm exploits the sparsenss of the reflectivity in 
the curvelet domain whereas the anisotropic norm enhances the continuity along the reflections while removing artifacts residing in 
between reflectors. While the two optimization methods (convex versus non-convex) share the same type of regularization, they differ 
in flexibility how to handle additional constraints on the coefficients of the imaged reflectivity and in computational expense.  A brief 
sketch of the theory is provided along with a number of synthetic examples. 

Introduction 
 
Least-squares migration has been a topic that received a recent flare of interest [7,8]. This interest is for a good reason because 
inverting for the normal operator (the demigration-migration operator) restores many of the amplitude artifacts related to acquisition 
and illumination imprints. However, the downside to this approach is that unregularized least-squares tends to fit noise and smear the 
energy.  In addition, artifacts may be created due to imperfections in the model and possible null space of the normal operator [11]. 
Regularization by minimizing an energy functional on the reflectivity can alleviate some of these problems, but may go at the expense 
of resolution. To preserve resolution in the image, choosing the appropriate regularization is very important. Non-linear functionals 
such as L1 minimization on the reflectivity itself partly deal with the resolution problem but ignore bandwidth-limitation and continuity 
along the reflectors [12]. 

Independent of above efforts, attempts have been made to enhance the continuity along imaged reflectors by applying anisotropic 
diffusion to the image [4]. The beauty of this approach is that it brings out the continuity along the reflectors. However, the way this 
method is applied now leaves room for improvement regarding (i) the loss of resolution; (ii) the non-integral and non-data constrained 
aspects, i.e.~this method is not constrained by the data which may lead to unnatural results and 'overfiltering'.   

In this paper, we make the first attempt to bring these techniques together under the umbrella of optimization theory and modern 
image processing with basis functions such as curvelet frames [3,2]. Our approach is designed to (i) deal with substantial amounts of 
noise (SNR < 0); (ii) use the optimal (sparse & local) representation properties of curvelets for reflectivity; (iii) exploit the near 
diagonalization of the normal operator by curvelets [2]; and (iv) use non-linear estimation, norm minimization to enhance the continuity 
along reflectors [5]. 

Solution strategies for seismic imaging 
 
After linearization the forward model has the following form: 

 nKmd +=  (1) 
where K  is a demigration operator given by the adjoint of the migration operator; m the model wih the reflectivity and n  white 
Gaussian noise with standard deviation nσ  (colored noise can be accounted for). Irrespective of the type of migration operator (our 
discussion is independent of the type of migration operator and we allow for post-stack Kirchoff as well as 'wave-equation' operators), 
two complementary solution strategies are being investigated in our group. These strategies are designed to exploit the sparseness & 
invariance properties of curvelet frames in conjunction with the enhancement of the overall continuity along reflectors. More 
specifically, the first method [6,5] preconditions the migration operator, yielding a reformulation of the normal equations into a standard 
denoising problem 

 F*d = F* Fm + F*n with F*F ≈ I  (2) 
such that  

 ε+= xy  (3) 
In above formulation, 1* −Γ= KCF , dFy *= , m = CΓ−1mand nF *=ε . Superscript “*“ means adjoint which mathematically defined as 
transpose- conjugate. *F is the curvelet frame preconditioned migration operator with **** )( KCCKKCCKdiag ≈=Γ . by virtue 
Theorem 1.1 of [2], which states that Green's functions are nearly diagonalized by curvelets; *,CC the curvelet transform and its 
transpose; x the preconditioned model and ε  close to white Gaussian noise (by virtue of the preconditioning). Applying a soft 



  Great Explorations – Canada and Beyond 122

thresholding to Eq. (2) with a threshold proportional to the standard deviation nσ of the noise on the data, gives an estimate for the 
preconditioned model with some sparseness [see for details 5]. For orthogonal bases, soft thresholding [9] solves 
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Figure 1 Marmousi model and its normal directions. (a) Reflectivity of the Marmousi model; for the detailed velocity model. (b) Directions where 
the gradients (white ↑ ) is maximum for the smoothed Marmousi model.  

 12 ||||||minargˆ xxyx +−=  (4) 
with 1|| x the l1-norm. Since curvelets are redundant frames and only approximately diagonalize the normal operator, the above 
thresholding is only approximate which means that x is not optimally sparse.  After thresholding, there remains the synthesis of the 
reflectivity from x̂  which involves the inversion of the preconditioning operator. During this synthesis step, a wavefront-continuity 
enhancing constraint is imposed on the reflectivity in the form of the following anisotropic norm [14] 

 Ja (m) =||Λ1/2∇m ||p , (5) 
with Λ  a location-dependent operator (see Fig.1 for an example) which rotates the action of the gradient towards the approximate 
normal to the reflector [see 5, where this norm is used]. For 2=p , Eq. (5) corresponds to anisotropic diffusion [5], minimizing l2-norm, 
and for 1=p  this penalty functional corresponds to anisotropic Total Variation (TV minimizes the l1-norm of the gradient), generalizing 
isotropic TV. In practice, the former imposes more smoothness on the image whereas the later bounds the variations while preserving 
discontinuities. 

The synthesis step involves the solution of the following constrained optimization problem 

 ˆ m = argminJa (m) s.t. |ΓCm − ˆ x |µ ≤eµ ∀µ ∈ M  (6) 
In words, this optimization procedure tailors each curvelet coefficients with index M∈µ  (M is the curvelet index set) such that the 
continuity along the reflectors is enhanced. The tolerance vector e  ensures that optimized coefficients do not wander off too far from 
the coefficients yielded by the denoised migrated image. This method has been implemented for Λ fixed in [5]. Advantages of the 
above divide-and-conquer approach are (i) the clearly identifiable steps of first denoising and then reconstructing with continuity 
enhancement; (ii) flexible constraints that connect the continuity enhancement with the denoised migrated data, (iii) dealing with any 
distribution for noise.  Disadvantages are (i) the increased problem size (curvelet frames are redundant); (ii) the approximate nature of 
the thresholding procedure; (iii) the necessity to compute the Γ , which can be generalized to non-diagonal Lanczos approximations 
[see the ensuing paper 10 and 5]; (iv) required knowledge of the tolerances e  that depend on the noise level of the migrated image 
and (v) the computational expense in solving the constrained optimization problem. 

The second solution aims to invert Eq. (1) using  

 nNKmdtsmJm σ=−= 2||..)(minargˆ  (7) 
with N  the number of data samples. The constraint imposes a condition on the second statistics of the noise. As opposed to the first 
solution strategy,  where a divide-and-conquer approach was followed, we propose to solve Eq.(7) by inverting the scattering operator 
while simultaneously minimizing a weighted sparseness constraint, 

 wc CmmJ ,1||)( =  (8) 
on the curvelet coefficients and the continuity constraint of Eq.(5) on the model with 

 J(m) = αJc(m)+ βJa (m) and α + β =1. (9) 
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The positive weighting vector w  is designed to penalize the low and high frequency ends of the spectrum since these are not present 
in the data. Since curvelets are multiscale, this weighting simply corresponds to increasing the weights for the coarsest and finest 
scales. In this way, we increase the chance for high and low frequency curvelets to be muted out iduring the optimization sequence. 
The coefficients α  and β  weight the relative importance of the sparseness on the curvelet coefficients versus enhancement of 
continuity along the reflectors. We solve the above optimization problem using the cooling method which is a standard method in 
Geophysical Inverse Theory [13]. Advantages of this second method are (i) the reduced model size; (ii) the integrated approach; (iii) 
availability of fast solvers, which use the approximate inverse of the normal operator. Its disadvantage is that it is not as flexible as the 
first solution strategy where each individual model curvelet coefficient can be manipulated individually. 
 
 
 
Examples 
 
Our two optimization strategies are illustrated by an example for the Marmousi model. Fig. 1 shows the normal directions (white ↑ 's) 
computed from the smoothed velocity model. In practice, similar information on the smoothed velocity model is used to compute the 
migration operator.  Without loss in generality, we use a post-stack Kirchoff modeling-migration operator for a constant velocity model. 
Synthetic data is generated according to [1] for a single geophone and 1800 sources.  The scattering operator K  is of the common-
offset Kirchoff type for a constant velocity model with smc /3500= . The reflectivity model is given by the derivative of the Marmousi 
model [1] (see Fig.(1) (a)). The image size is 512512×  with a depth-sample interval of 5.8(m) and a horizontal-sample interval of 
18.0(m). The source locations range from [-10800, 13540](m) and the geophone record 512 time samples with a sample interval 

)(2 mst =∆ .  Both source and receiver signatures are ignored, yielding a broad-band response.  Noise was added yielding a signal-to-
noise ratio of SNR=0 (dB), which corresponds to 1=nσ  for a unit signal standard deviation.  

Fig's 2-3, show examples of both optimization strategies for the above synthetic experiment. Both strategies greatly improve the 
image quality. The results for the second strategy are better which can be explained by the more rapid convergence of the Newton 
method underlying this strategy. For details refer to the ensuing paper.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Conventional non-regularized least-squares imaging versus optimized imaging using the first strategy. (a) Least-squares migrated 
image; (b) Optimized  image using the penalty functional using information on the normal  directions depicted in Fig.1. Note the striking  
improvement. 

 
Discussion and conclusions 
 
We presented a new imaging approach which aims to employ a delegate balance between sparseness in the curvelet domain on the 
one hand and  continuity in the physical domain on the other. We presented two alternative strategies both of which conduct a l1-norm 
minimization on the curvelet coefficients in combination with the minimization of an anisotropic diffusion/Total-Variation norm on the 
reflectivity but differ with respect to the employed  optimization techniques. The first strategy is built on a convex optimization 
technique enforcing the inequality in Eq. (6), whereas the second strategy entails a non-convex optimization procedure. Irrespective of 
the optimization strategies, explicit use is made that curvelet coefficients are large whenever curvelets align with parts of the reflector. 
The l1-norm boosts these coefficients and hence brings out the reflectivity at the expense of the noise. The subsequent anisotropic 
norm minimization enforces lateral consistency by 'chaining'' the sparse curvelets together along the reflectors.  This approach can be 
seen as a first step towards defining a framework for non-linear regularization in seismic imaging. 
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Figure 3. Results for non-convex optimimization. (a) Migrated Image, Mean Square Error (MSE): 3.12e6  (b) Enhanced Image, MSE:3.95e4. 
Notice the fact that the wiggles at the target zone (black box) of the original and imaged reflectivity more or less overlap for the image created 
with our optimization method. 


