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Abstract 
 
This work illustrates a methodology for reservoir inference in a siliciclastic oil field. The goal of this 
methodology is to produce an indicator of good reservoir cells inside of a 3D oil field volume. To create this 
indicator, we consider porosity, clay volume and saturation.  

The degree of confidence that we have regarding these reservoir properties depends on current state of 
information. The sources of information are prestack seismic data, petrophysical and geological information 
from well data and rock physics models (empirical and theoretical). The seismic data has been pre-
processed in an amplitude-preserved fashion. 

These data sets are used to construct local probabilities representing each piece of information and 
associated degree of confidence, regarding the reservoir parameters.  These probabilities are then combined 
by application of the Bayes theorem.  As a result, we obtain a collection of posterior distributions probability 
density functions (PDF) covering each cell of the reservoir. The desired measures inferences can be 
computed from the distributions (e.g., estimates and associated uncertainty) and presented as reservoir 
inference cubes for further analysis. In particular, it can be used to delineate reservoir conditions for a risk 
analysis workflow associated with time-lapse and reservoir development projects. 

 
Introduction 
 
The point of view taken herein is that determination of reservoir properties is essentially an inference 
problem. Geophysical data (seismic data and well data) – the main source of information used in a reservoir 
characterization work – are experimentally acquired and subjected to error disturbances. Also, the theory 
involving the data signal processing and the reservoir characterization process usually introduce additional 
uncertainty into the calculations. How the data and the theory affect the final uncertainty involved in reservoir 
description is a key ingredient to be considered in the evaluation of the exploitation risk for the oil industry. 

This paper develops a methodology to provide an inference framework targeted for porosity, lithology and saturation from geophysical 
and petrophysical data. This work has been developed in a long-term project and is based on an extension of previous work. In the 
work presented by Loures and Moraes (2003) the final solution is a set of PDFs for porosity from which desired inferences can be 
drawn. Usually the median and an associated length of a probability interval (e.g., 0.95) are respectively used as estimator and 
measure of uncertainty.  

Later, Loures and Downton (2004) implemented a methodology incorporating AVO inversion and modified the rock physics model to 
jointly infer porosity and clay volume for each reservoir cell. In this case, the joint posterior probability can be computed with greater 
reliability than the PDFs for individual parameters.  The joint PDF is also useful for mapping good reservoir quality sandstones (i.e., 
high porosity and low clay volume). 

Here, we take a step forward by including saturation on the inference workflow, after the porosity and clay 
volume PDFs have been computed. Analysis of the posterior distributions shows that conventional surface 
seismic data do not contain enough information for producing reliable estimates of saturation. It may, 
however, be used to discriminate fluid content and as indicator of quality reservoir, when used in combination 
with porosity and clay volume.    

Methodology 
 
Here we present principal aspects of the methodology and the main steps used in our workflow. 

Bayes Theorem: 

The main task is to compute posterior PDFs for parameters, given the available data sets and prior 
information. The basic formulation, which is derived using Bayesian probability theory, has been previously 
presented by Loures and Moraes (2003). It essentially consists of a joint posterior distribution for the 
parameters under investigation p(m|d), where m represents the unknown parameters vector  and d is the 
data-set. According to Bayes theorem, this joint PDF can be written as  
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where q is the prior distribution, which represent the data independent information, and l is the likelihood 
function – the data distribution.  

 
Work flow: 
From seismic data to the joint conditional posterior PDF for porosity (φ), clay volume (χ) and saturation (Sw) 
the methodology follow a hierarchic workflow, which can be described by the following steps: 

 i- Seismic inversion: the first step is to compute, for each reservoir cell,  a local posterior distribution 
for elastic velocities, given the seismic data and prior information p(Vp, Vs | d). This PDF represents the 
information regarding Vp and Vs that is contained in seismic data and from prior information. It therefore 
incorporates uncertainties related to the seismic recorded signal (acquisition) and related processing and  
elastic inversion. The inversion for the elastic attributes is based on the AVO theory, using prestack data. 
Detailed information and bibliographic review for understanding of the AVO theory can be found in Castagna 
(1993). 

 ii- Lithology inference: here we compute a posterior distribution for porosity and clay volume p(φ, χ | 
Vp, Vs), given the information provided by p(Vp, Vs | d) obtained in the previous step. A petrophysical 
analysis is the framework to construct the empirical rock physics models capturing the correlations, which 
exist between the lithological parameters and the elastic impedances used in the Bayes theorem for this 
application. Additional information on the AVO inversion and petrophysical analysis is, respectively, given by 
Loures and Downton (2004) and Loures (2003). 

 iii- Reservoir quality inference: as a final step, we compute the posterior distribution for porosity, clay 
vollume and saturation p(φ, χ, Sw | Vp, Vs) for each reservoir cell, using all the information gained from 
previous steps, as provided by p(Vp, Vs | d) and  p(φ, χ | Vp, Vs). Fluid substitution theory is used as a 
mathematical relationship relating the petrophysical properties to the elastic velocities in the likelihood 
function.  

An important feature of the above workflow is an inference work driven by p(φ, χ | Vp, Vs) aimed on 
discriminating sandstone and shale lithologies (item ii). When the state of information described  by  p(φ,χ | 
Vp, Vs) indicates sandstone as the most likely proposition for reservoir lithology at a particular cell, we 
promptly revise this PDF according to a more specialized petrophysical model. This is another empirical rock 
physics model calibrated, using only intervals corresponding to sandstone samples. The result is a more 
accurate PDF p(φ, χ | Vp, Vs). This process of revising a PDF associated with new propositions in face of the 
available information is the essence of learning experience (see e.g., Zellner, 1996). 

Once the conditional posterior PDF p(φ, χ, Sw | Vp, Vs) is computed, one can infer the reservoir quality 
condition associated with a given reservoir cell. The conditions for a good quality reservoir are: i- minimun 
porosity value φ >φmin, ii- maximun clay volume value χ < χmax and iii- oil saturation Sw < 0.2. The probability 
measure associated with the event {φ >φmin , χ < χmax , Sw < 0.2}, as computed from the posterior PDF p(φ, χ, 
Sw | Vp, Vs), provides the information necessary for deciding as to whether reservoir quality is good or not. 
For that a decision criterion needs to be set. This criterion can be just semi-quantitative (higher than other 
possibilities) or a fixed probability value, such as 0.5 or 0.95. Other opposing events can be defined to check 
on the reliability of the discrimination between good reservoir to no reservoir within the sandstone sequences. 
A possible reliability measures can be given by the distance between the probabilities associated with the two 
events representing the quality. This would be an important input to risk analysis. 

 
 Conclusion 
The problem of reservoir characterization has being carried as an inference work, considering uncertainties 
associated with each data set.  During the course of this research, we have observed that the information 
from conventional seismic data and well log is not sufficient for quantitatively describing lithology, porosity and 
saturation. This ill-posed problem has being avoided by reducing the amount of information being extracted 
from the posterior distribution to a compatible level. This is achieved by setting up a proposition and as a 
decision criterion representing good reservoir quality. An associated measure of reliability can be further 
obtained by making comparisons with probabilities of contrasting propositions. 
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