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3-D TTI Eikonal Traveltime Kirchhoff Migration 
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Introduction 
 

Computing Kirchhoff migration traveltimes in anisotropic media is expensive since each propagation step involves solving 
an eigenvalue problem (Cerveny, 1972). Anisotropy is usually weak, however, allowing us to use a fast approximation derived by 
perturbing a simple, if unrealistic, elliptical anisotropic model (Ettrich and Gajewski, 1998; Alkhalifah, 2002).  This approximation is 
especially critical in 3-D prestack imaging where data sizes can be very large. 

To compute traveltimes in transversely isotropic media with a vertical symmetry axis (VTI anisotropy), Alkhalifah (2002) 
proposed a finite-difference algorithm based on perturbing the VTI anisotropic eikonal equation starting from an elliptically 
anisotropic background velocity model. This takes advantage of an expanding wavefront upwind finite-difference scheme with 
superior stability and accuracy properties. 

Often, however, the VTI assumption is not well satisfied. If the sedimentary layering is not horizontal, for example, the 
symmetry axis of transverse isotropy is most likely tilted, and the angle-dependent velocity will be affected accordingly. The VTI 
assumption in these areas can cause significant imaging errors, resulting in mispositioning and misfocusing of exploration targets.  

Where the VTI assumption is inadequate, we can instead assume a TTI media, which is transversely isotropic about a 
tilted symmetry axis. TTI is a common feature of shale formations in overthrust areas such as the Canadian Foothills. 

In this paper I extend Alkhalifah's VTI traveltime algorithm to TTI media. I begin by deriving a linearized anisotropic 
eikonal equation for TTI media. Similarly an iterative linearization of the eikonal equation is used as the basis for an algorithm of 
finite-difference traveltime computations, starting with a background velocity model that is elliptically anisotropic in TTI media. 
Instead, however, of using vertical and NMO velocities, and the anisotropic coefficient η, to describe VTI anisotropic media, I use 

Thomsen's parameters 0υ ,ε , and δ in TTI anisotropic media (Thomsen, 1986).  Furthermore, rather than perturbing the 

horizontal velocity or the anisotropic parameter η, I perturb the anisotropy parameter δ since it is the least sensitive parameter in 

anisotropic media. Therefore only a single iteration is usually needed for a sufficiently accurate traveltime computation. 
 
Theory 
 
Begin with the eikonal equation for a VTI anisotropic media (Alkhalifah, 2002) 

(1) 

 
 
 

 

 

 

where ( )zyx ,,τ  is the eikonal traveltime from the source to the point at coordinates ( )zyx ,, , and ,,0 ευ and δ are Thomsen's 

parameters (Thomsen, 1986) at that point. This equation is fourth order in ,τ as opposed to second order for the isotropic eikonal 

equation, complicating the finite-difference solution. 
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The idea is to linearize equation (1) with respect to δ . Begin by defining the residual traveltime nττ −=∆  and the residual 

δ parameter nδδλ −= . Substituting these into equation (1) and neglecting higher-order terms gives 

(2) 

 

 

 

 

 

 

 

which is the iterative linearization of the eikonal equation (1). nδ can be computed from equation (1)  when an estimated traveltime 

nτ is available. If we further assume that the initial traveltime 0τ  is obtained with equation (1) in an elliptically anisotropic media 

(that is, εδ = ), then equation (1) becomes 

(3) 
 

 
 
 
 

Substituting εδ =0  in equation (2), the first-order linearized eikonal equation simplifies to 

(4) 
 
 
 
 
 
 
 

Now consider a transversely isotropic medium with a tilted symmetry axis dipping at an angle θ  from the vertical 

direction along the azimuth angle φ  from the inline direction.  The elliptical anisotropic eikonal equation (3) and the first-order 

linearized eikonal equation (4) for this tilted media become 
(5) 

 
 
 
 

 
 

(6) 
 
 
 
 

where all coefficients ,,,,,,,,, 210321321 γγγβββααα  and ,3γ  are functions of angles θ  and φ  and anisotropic 

parameters ε  andδ . Coefficients ,,, 210 γγγ  and 3γ  also depend on the derivatives of the initial traveltime fields.  
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The TTI elliptical anisotropic eikonal equation (5) is similar to VTI anisotropic eikonal equation (3) except for the presence 
of additional traveltime cross derivatives resulting from the angular dependence of the anisotropy. Therefore, equation (5) can be 
solved numerically using the efficient expanding wavefront method developed for isotropic media (Qin et al, 1992; Sethian and 
Popovici, 1999). The cross derivatives, however, require a higher-order upwind finite-difference scheme. 

The first-order linearized eikonal equation (6) is less complicated than the elliptical anisotropic eikonal equation (5) and 
can also be solved numerically using the efficient wavefront expanding method with a first-order upwind finite-difference scheme. 
This means that the linearized eikonal equation is also solved by computationally propagating along grids of minimum traveltimes. 

Since coefficients ,,, 210 γγγ  and 3γ  are all functions of traveltime derivatives, stable space-domain convolution operators 

(Thurston and Brown, 1994) are used to calculate the derivatives of the traveltime field. 
 
Examples 
 

To demonstrate our algorithm for prestack depth migration I calculate the traveltimes for simple VTI and TTI models. The 

model consists of an anisotropic layer with constant parameters 0υ = 5000 m/s, ε = 0.2, δ = 0.1, θ  = 45 deg, and φ  = 0 deg 

overlaying an isotropic half-space with a constant velocity of 6500 m/s. The input trace is located at (0,0,0).  Figures 1 and 2 show 
the migration responses in the inline ( y  = 0) and crossline ( x  = 0) directions, respectively. Figure 3 shows the time slices at 600 

ms. From the responses we see the influence of the tilted axis on migrations. During the presentation I will also show examples 
using physical models and real data. 
 

                                     
 

Figure 1: Migration impulse responses in the inline ( )0=y  from simple VTI (left) and TTI (right) models. 

 

                                     
 

Figure 2: Migration impulse responses in the crossline ( )0=x  from simple VTI (left) and TTI (right) models. 
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Figure 3: Time slices of migration impulse response at 600 ms from simple VTI (left) and TTI (right) models. 
 
Conclusions 
 

I have developed an algorithm for finite-difference traveltime computation, based on an iterative linearization of an 
anisotropic eikonal equation in transversely isotropic media with a tilted symmetry axis (TTI). I derive this by linearizing with 

respect to the anisotropy parameter δ , thereby reducing the number of iterations required. For most imaging applications, a 

single iteration is sufficient to give sufficient accuracy in traveltime computations. 
Tests show that applying VTI assumption where tilt is actually non-zero will introduce significant errors in the migration 

because the tilt axis of symmetry has a significant effect on the traveltime calculations. 
Future work will include computing branches of the multi-valued traveltime other than the first arrival (for example, the 

maximum energy) and coupling traveltime and amplitude computations. 
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