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Summary 
 
A statistical approach to time-lapse cross-equalization, using 
a back-propagation Neural Network technique is presented. 
Analysis of the differences between two vintage datasets is 
done by training at a region away from the production zone.  
The same concept is used for offset equalization prior to 
AVO analysis.  Synthetic tests and a real data example are 
presented, demonstrating the concept. 
 
Introduction 
 
The differences between two vintage datasets need to be 
minimized when cross equalizing time-lapse data.  The 
objective is to map the variations due to production, while 
minimizing those resulting from different acquisition and 
processing procedures.  We distinguish between two types 
of variations between the datasets, local and global. Local 
variations could have been caused, for example, by 
differences in the acquisition grids and parameters, or by 
variations in the velocity models used to process the two 
datasets. Global refers to the variations that exist at any 
location.  These, for example, can be due to differences in 
source and receiver signature or in processing.   
 
Global variations between different vintage datasets are 
traditionally minimized using a combination of deterministic 
wavelet matching techniques and cross-correlations.  In this 
paper we propose a statistical approach to cross-
equalization. For this purpose we assume that the 
differences between the two datasets can be very complex, 
but they are global for the data.  This means that overall the 
same differences can be detected at any location in the 
dataset except in the vicinity of the reservoir.  Based on this 
assumption we analyze the difference between the two 
datasets at a region away from the production zone. We 
then find a single operator which maps one dataset to the 
other.  Finally, we apply this operator to the whole input 
dataset and obtain two equalized datasets where the 
difference due to production can be easily mapped.   
 
We use the Neural Networks approach to find this operator. 
It allows us to define a non-linear, multi-dimensional 
operator, which can handle complex mapping of one dataset 
to the other, and does not rely on any deterministic theory to 

explain the differences between the two datasets.  The 
Neural Networks technique is ideal for finding the general 
rule from a set of specific examples, and therefore is very 
suitable for solving the cross-equalization problem.  
  
We use the same approach for offset equalization. Offset 
equalization is often required for AVO analysis. Here 
variations from one offset to another (or variations between 
angle stacks) due to NMO stretch, phase rotations, 
amplitude scaling and other wavelet distortions, need to be 
minimized.  In this case we select some key horizons, where 
we expect to have minimum AVO variations. We define a 
target offset (mostly one of the far offsets), and use the 
Neural Networks technique to find an operator which will 
map the data from one offset to the target offset, so that the 
differences are minimized.  Note that in this case a different 
operator is defined for each offset (or angle stack). To 
preserve AVO, the average original AVO response of the 
input data can be mapped before the process, and restored 
at the end.  
 
Method 
 
The Neural Networks technique is a two-phase 
process. The first phase is a training phase where a 
generalized operator that maps the input training 
dataset to the desired output is derived. The training 
set is a representative subset of the seismic data. The 
second phase is an application phase where the 
operator is applied to the entire data.   
 
The operator is defined using a multi-layer perceptron 
Neural Networks structure. We construct a convolution-
like operation in which a single input-desired output 
pair is composed of n input samples, and is used to 
predict a single output sample. n corresponds to the 
typical wavelet length in the dataset. Figure 1 presents 
a general architecture of the network. In this network 
the weights wi and biases (b) are defined at the hidden 
layers and at the output. Each neuron (xi; black dot) 
calculates a weighted sum and adds a bias (b):  
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, where f is an activation 

function and y is the output value. The weights, 
including the bias, are determined by training using a 
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back propagation algorithm (Fausett, 1994, Calderon et 
al, 2000). A  
 
combination of very fast simulated annealing and back 
propagation can be used. 
 
Note that the training dataset is constructed using a running 
window of length n to define input-desired output pairs within 
each input trace.  Adding various seismic attributes as 
additional input to the network enhances the cross-
equalization procedure. We use two types of attributes.  The 
first are complex trace attributes (Tanner) such as signal 
envelope, amplitude weighted instantaneous phase etc. The 
use of such attributes can enhance network flexibility and 
resolution power.  The other type of attributes includes time 
or depth (which can be measured from a reference horizon) 
and the horizontal coordinates.   
 
 
These allow us to define an operator that is time (or depth) 
varying as well as laterally varying. Note that these 
variations are usually long wavelength variations. Both types 
of input attributes are included in the network as additional 
input points for each training set. 
 
For the training stage a small, high data quality region is 
used. We normally define a time window that follows a 
dominant horizon. 
 

 
 
Examples 
 
Synthetic tests were designed to show the ability of the 
Neural Networks operator to: 
 

• Handle complex wavelet differences 

• Handle time shifts between the two 
datasets 

• Separate between local changes and 
global changes 

• Extract a global operator when training 
data contains interferences 

• Handle differences, which are a function of 
time. 

 
Figure 2 presents a synthetic example that was generated 
from real well logs within a complex structure.  Two Normal 
Incidence reflectivity sections were generated using very 
different wavelets (different amplitude and phase 
spectrums).  One section (a) was used as input to the Neural 
Networks cross-equalization program and the other was 
used as the desired output (b). The result of cross-
equalization (c) shows an excellent match to the desired 
output. Training was performed on the window marked with 
a rectangle on (a). 
 
Figure 3 presents a synthetic test that was designed to show 
that the operator derived using the Neural Networks 
procedure can be used to separate between local changes 
and global changes in the data. This dataset has three 
reflectors, the first two reflectors have an identical reflectivity 
response. The third reflector has amplitude, which is 
constant on the input data (a) and gradually increases to the 
east in the desired output data (b).  The difference between 
desired output and actual output (c) shows that the 
procedure preserved local differences between datasets 
while minimizing the global ones. 
 
The test presented in Figure 4 uses a dataset similar to the 
one used in Figure 2.  In this case, the input was created as 
in Figure 2, and the desired output (b) was created with an 
amplitude decay due to geometrical spreading. This 
introduced a difference in amplitudes which is time (t) 
varying.  To handle the time variations we used time as one 
of the attributes in the network.  Comparing desired output 
(b) with actual output (c) demonstrates that this network 
construction can be used to find time dependent variations. 
 
The application of the Neural Networks approach to offset 
equalization is demonstrated using a real dataset (Figure 5).  
Here we used the near angle stack (a) and the far angle 
stack (c) as the input and the desired output to the 
procedure.  The objective was to transform the near angle 
stack to better match the far angle stacks, and thus achieve 
“offset” equalization.  The dataset was acquired from an oil 
field with an AVO anomaly (marked on c). This anomaly 
created significant differences between the near and the far 
offset data in the vicinity of the reservoir.  The objective of 
the procedure is to preserve the anomaly, while matching 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  The Neural Network architecture. 
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the character of the data. Consequently, the training was 
performed away from this reservoir zone.  We used, as a 
training set, the data within a time window that followed the 
lower strong horizon (pink).  The result, an equalized near 
angle stack, is presented in Figure 5b. It shows that the 
overall character of the output data matches that of the far 
angle stack (the desired output) in terms of wavelet shape 
and frequency content, and the AVO anomaly is still 
preserved. 
 
Conclusions 
 
Neural Networks technique can be used to define an 
operator for matching two datasets.  Our experience shows 
that results can be improved when this procedure is applied 

after standard deterministic procedures.  This way the 
Neural Networks technique is used to resolve the residual 
differences. 
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