4-D cross-equalization and offset equalization using a Neural

Networks approach

Uri Zakhem , Anat Canning* and Alex Litvin, Paradigm Geophysical, Israel

2005 CSEG National Convention

Summary

A statistical approach to time-lapse cross-equalization, using
a back-propagation Neural Network technique is presented.
Analysis of the differences between two vintage datasets is
done by training at a region away from the production zone.
The same concept is used for offset equalization prior to
AVO analysis. Synthetic tests and a real data example are
presented, demonstrating the concept.

Introduction

The differences between two vintage datasets need to be
minimized when cross equalizing time-lapse data. The
objective is to map the variations due to production, while
minimizing those resulting from different acquisition and
processing procedures. We distinguish between two types
of variations between the datasets, local and global. Local
variations could have been caused, for example, by
differences in the acquisition grids and parameters, or by
variations in the velocity models used to process the two
datasets. Global refers to the variations that exist at any
location. These, for example, can be due to differences in
source and receiver signature or in processing.

Global variations between different vintage datasets are
traditionally minimized using a combination of deterministic
wavelet matching techniques and cross-correlations. In this
paper we propose a statistical approach to cross-
equalization. For this purpose we assume that the
differences between the two datasets can be very complex,
but they are global for the data. This means that overall the
same differences can be detected at any location in the
dataset except in the vicinity of the reservoir. Based on this
assumption we analyze the difference between the two
datasets at a region away from the production zone. We
then find a single operator which maps one dataset to the
other. Finally, we apply this operator to the whole input
dataset and obtain two equalized datasets where the
difference due to production can be easily mapped.

We use the Neural Networks approach to find this operator.
It allows us to define a non-linear, multi-dimensional
operator, which can handle complex mapping of one dataset
to the other,and doesnot rely-on any-deterministic-theory to.

Evolving Geophysics Through Innovation

explain the differences between the two datasets. The
Neural Networks technique is ideal for finding the general
rule from a set of specific examples, and therefore is very
suitable for solving the cross-equalization problem.

We use the same approach for offset equalization. Offset
equalization is often required for AVO analysis. Here
variations from one offset to another (or variations between
angle stacks) due to NMO stretch, phase rotations,
amplitude scaling and other wavelet distortions, need to be
minimized. In this case we select some key horizons, where
we expect to have minimum AVO variations. We define a
target offset (mostly one of the far offsets), and use the
Neural Networks technique to find an operator which will
map the data from one offset to the target offset, so that the
differences are minimized. Note that in this case a different
operator is defined for each offset (or angle stack). To
preserve AVO, the average original AVO response of the
input data can be mapped before the process, and restored
at the end.

Method

The Neural Networks technique is a two-phase
process. The first phase is a training phase where a
generalized operator that maps the input training
dataset to the desired output is derived. The training
set is a representative subset of the seismic data. The
second phase is an application phase where the
operator is applied to the entire data.

The operator is defined using a multi-layer perceptron
Neural Networks structure. We construct a convolution-
like operation in which a single input-desired output
pair is composed of n input samples, and is used to
predict a single output sample. n corresponds to the
typical wavelet length in the dataset. Figure 1 presents
a general architecture of the network. In this network
the weights w; and biases (b) are defined at the hidden
layers and at the output. Each neuron (x; black dot)
calculates a weighted sum and adds a bias (b):

y= f(zirio X W, +b), where f is an activation

function and y is the output value. The weights,



back propagation algorithm (Fausett, 1994, Calderon et
al, 2000). A

combination of very fast simulated annealing and back
propagation can be used.

Note that the training dataset is constructed using a running
window of length n to define input-desired output pairs within
each input trace. Adding various seismic attributes as
additional input to the network enhances the cross-
equalization procedure. We use two types of attributes. The
first are complex trace attributes (Tanner) such as signal
envelope, amplitude weighted instantaneous phase etc. The
use of such attributes can enhance network flexibility and
resolution power. The other type of attributes includes time
or depth (which can be measured from a reference horizon)
and the horizontal coordinates.

These allow us to define an operator that is time (or depth)
varying as well as laterally varying. Note that these
variations are usually long wavelength variations. Both types
of input attributes are included in the network as additional
input points for each training set.

For the training stage a small, high data quality region is
used. We normally define a time window that follows a
dominant horizon.
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Figure 1: The Neural Network architecture.

Examples

Synthetic tests were designed to show the ability of the
Neural Networks operator to:

. Handle complex wavelet differences

. Handle time shifts between the two
datasets

. Separate between local changes and
global changes

. Extract a global operator when training
data contains interferences

. Handle differences, which are a function of
time.

Figure 2 presents a synthetic example that was generated
from real well logs within a complex structure. Two Normal
Incidence reflectivity sections were generated using very
different wavelets (different amplitude and phase
spectrums). One section (a) was used as input to the Neural
Networks cross-equalization program and the other was
used as the desired output (b). The result of cross-
equalization (c) shows an excellent match to the desired
output. Training was performed on the window marked with
a rectangle on (a).

Figure 3 presents a synthetic test that was designed to show
that the operator derived using the Neural Networks
procedure can be used to separate between local changes
and global changes in the data. This dataset has three
reflectors, the first two reflectors have an identical reflectivity
response. The third reflector has amplitude, which is
constant on the input data (a) and gradually increases to the
east in the desired output data (b). The difference between
desired output and actual output (c) shows that the
procedure preserved local differences between datasets
while minimizing the global ones.

The test presented in Figure 4 uses a dataset similar to the
one used in Figure 2. In this case, the input was created as
in Figure 2, and the desired output (b) was created with an
amplitude decay due to geometrical spreading. This
introduced a difference in amplitudes which is time (t)
varying. To handle the time variations we used time as one
of the attributes in the network. Comparing desired output
(b) with actual output (c) demonstrates that this network
construction can be used to find time dependent variations.

The application of the Neural Networks approach to offset
equalization is demonstrated using a real dataset (Figure 5).
Here we used the near angle stack (a) and the far angle
stack (c) as the input and the desired output to the
procedure. The objective was to transform the near angle
stack to better match the far angle stacks, and thus achieve
“offset” equalization. The dataset was acquired from an oil
field with an AVO anomaly (marked on c). This anomaly
created significant differences between the near and the far
offset data in the vicinity of the reservoir. The objective of
the procedure is to preserve the anomaly, while matching
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the character of the data. Consequently, the training was
performed away from this reservoir zone. We used, as a
training set, the data within a time window that followed the
lower strong horizon (pink). The result, an equalized near
angle stack, is presented in Figure 5b. It shows that the
overall character of the output data matches that of the far
angle stack (the desired output) in terms of wavelet shape
and frequency content, and the AVO anomaly is still
preserved.

Conclusions
Neural Networks technique can be used to define an

operator for matching two datasets. Our experience shows
that results can be improved when this procedure is applied

after standard deterministic procedures. This way the
Neural Networks technique is used to resolve the residual
differences.
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