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Abstract 
Two methods are derived for incorporating the quadratic shear reflectivity term into estimation of shear impedance reflectivity from 
AVO intercept and gradient data. These both give improved estimates over current linear methods, as illustrated with calculations on 
synthetic data. 

Introduction 
A variety of AVO methods exist, but the most common industrial methods involve extracting the AVO intercept and gradient. This 
approach is generally attributed to Shuey (1985), who rearranged the Aki-Richards linearization of the Zoeppritz equations into three 
terms. These terms depend on various functions of sin2θ, and the coefficients are expressed in terms of a Poisson ratio contrast. 
Today a two-term truncation is commonly used, A + B sin2�, and A and B are generally expressed in terms of velocity and density 
contrasts. Such forms are still referred to as the two-term Shuey equation. 

In some cases it does not matter what quantities are used to express A and B, as the intercept and gradient are often interpreted 
directly. Other times though they are used to estimate quantities of interest, in particular the P-wave and S-wave impedance 
reflectivities, RI and RJ (I=ρα, J=ρβ). The first of these is a straightforward identification, RI = A. The second is generated by 
theoretical approximations, such as RJ ≈ (A – B) / 2. The purpose of this paper is to employ knowledge of the non-linear nature of 
reflection coefficients in order to make more accurate estimations of RJ from A and B. 

In a previous study we have shown how to add key quadratic corrections to the Fatti approximation (Fatti et al., 1994), which is a 
stacking-type AVO method, without having to resort to iterative solution techniques (Ursenbach, 2004). Now we extend this notion to 
intercept-gradient AVO methods. 

Theory 
In the Aki-Richards linearization of the Zoeppritz equations (Aki & Richards, 1980), the P-wave reflectivity is given by 
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where θ is the average of the angle of incidence and the angle of transmission of P-waves at the interface, γ ≡ β/α = (β1+ β2) / 
(α1+ α2), Rα = (α2 − α1) / (α1 + α2), and Rβ and Rρ are defined similarly. αi, βi and ρi are the P-wave velocity, S-wave 
velocity and density for the i th interface. 

We have previously shown that, in many practical cases of interest, the most important correction to this linear expression is the 
quadratic shear-wave term (Ursenbach, 2004). Usually it is even more important than the linear density term. This quadratic term 
can readily be derived, and the expanded expression is given as 
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where ϕ is the average of the reflection and transmission angles for converted waves, and cosϕ ≈ √(1 − γ2sin2�)

There are two ways we can use Eq. (2) to obtain expressions for A and B. In the first, which we will call the expansion method, 
one can expand Eq. (2) in powers of sin2�The first term again yields A = RI, while the second term gives 
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The expression for B is a quadratic polynomial in RJ, but for it to be useful we must estimate the Rρ term. We will do this by three 
different methods: (1) Set Rρ = 0; (2) Set Rρ = RI / 5 = A / 5 (Gardner’s relation, [Gardner et al., 1974]); (3) Set γ = ½. Solving the 
quadratic equation then results in the three following estimates of RJ: 
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 exp ( 0) 1 1 ( ) / /(4 ),JR R A Bρ γ γ = = − − − 
   (3) 

 exp 2( / 5) 1 1 [4 (1 ) / 5 ] / /(4 ),JR R A A Bρ γ γ γ = = − − + −
 

   (4) 

 exp ( 1 / 2) 1 1 2( ) / 2.JR A Bγ  = = − − − 
   (5) 

If we had started from Eq. (1) instead of Eq. (2), the same procedures would have yielded, respectively,  

 exp 2( 0;  linear) ( ) /(8 ),JR R A Bρ γ= = −    (6) 

 exp 2 2( / 5;  linear) [4 (1 ) / 5 ] /(8 ),JR R A A Bρ γ γ= = + −    (7) 

 exp ( 1/ 2; linear) ( ) / 2.JR A Bγ = = −    (8) 

Thus by expanding Eq. (2) [or Eq. (1)] in powers of sin2� we can obtain various estimates of RJ. [Eqs (6)-(8) can also be obtained 
from appropriate linear Taylor expansion of Eqs (3)-(5).] 

A second approach for obtaining estimates is simply to set Eq. (2) equal to the form implied by Shuey’s two term approximation, A 
+ B sin2�, for specific choices of �. We will do this for two different choices of angle, � = 0 and � = �max, where �max 
corresponds to the maximum offset employed in a given AVO calculation. We will call this the two-point method. It yields the 
following two expressions: 
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These two equations are linear in the two variables A and B. Solving for these two quantities yields A = RI and 
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which implicitly defines G2
max. This equation can be rewritten as 
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Again we obtain a quadratic equation in RJ, with coefficients depending on A and B, and again we must make some approximation 
to the Rρ term. We can make two of the same choices as before: (1) Set Rρ = 0; (2) Set Rρ = A / 5. The third choice is slightly 
different: (3) Set γ = 1/(2cosθmax). Solving the quadratic equation then yields 
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The analogous results that would be obtained using Eq. (1) instead of Eq. (2) are as follows: 
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Again, Eqs (12)-(14) can also be obtained by appropriate linear Taylor expansion of Eqs (9)-(11). 

Application 
We have applied the twelve methods of Eqs (3)-(14) to 110 different AVO calculations. Each of the 110 calculations is based on 
synthetic reflection data generated from elastic parameter data obtained from well-logs and laboratory studies (Castagna & Smith, 
1994). For each of the 110 calculations, an estimate of RJ is made, and the error, ∆RJ, is calculated, relative to the exact value. To 
give a rough indication of the efficacy of each method, the average of the absolute values of all 110 ∆RJ is calculated for each of 
the twelve methods, and the results are tabulated below: 

Table I: The average absolute value of the errors for the twelve methods of estimating RJ represented by Eqs (3)-(14). 

 Linear Quadratic 

 
Expansion method 

Eqs (6)-(8) 
Two-point method 

Eqs (12)-(14) 
Expansion method 

Eqs (3)-(5) 
Two-point method 

Eqs (9)-(11) 
Rρ = 0 .0265 .0245 .0170 .0173 

Rρ = RI5 .0257 .0220 .0161 .0121 
γ = ½ or 1/(2cos2θ) .0334 .0345 .0290 .0274 

 

We note some obvious trends from Table I. The error of the quadratic methods is significantly less than that of the linear methods. 
It is also clearly better to approximate Rρ than γ (assuming some reasonable estimate of γ exists). It also appears that the two-
point method is slightly better than the expansion method, and that the Gardner relation estimate of Rρ is slightly preferable to 
setting Rρ to zero. Consistent with these trends, the best method overall according to this data is Eq. (10), with an average 
absolute error of .0121 over the 110 calculations.  

Below we present a more detailed picture of the individual errors for Eq. (10) (always shown as blue crosses) and compare these 
with individual error values for some of the other methods. In Figure 1 we compare the errors of Eq. (10) with those of its linear 
analogue, Eq. (13). We display the same data twice, but with different ordering. In Figure 1a it is plotted against the exact RJ. This 
shows that Eq. (10) removes a quadratic trend that is present in the error of Eq. (13). In Figure 1b the same data is plotted against 
the exact Rρ, and this shows that large errors of Eq. (10) in Figure 1a are more commonly associated with large density 
reflectivities.  

       

FIG. 1. A comparison of the 110 individual errors in RJ as predicted by Eqs (10) and (13). The results are plotted against the exact value of RJ in 
a), where it is clear that Eq. (10) removes a quadratic trend from the error. The same results are plotted against the exact value of R� in b), 
where it is seen that a few values predicted poorly by Eq. (10) are generally associated with interfaces possessing a large value of R�. 
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FIG. 2. A comparison of errors in RJ as predicted by Eqs (9)-(11). FIG. 3. A comparison of errors in RJ as predicted by Eqs (4) and (10). 

In Figure 2 we compare Eq. (10) against the two other Rρ-term approximations of Eqs (9) and (11). Here we see again that 
approximations to Rρ itself are superior to approximations to γ. For points with large Rρ, employing the Gardner relation is 
preferable to simply neglecting Rρ.  

In Figure 3 we compare Eq. (10) to its expansion method analogue, Eq. (4). The two-point method appears superior for the main 
cluster of points, but the expansion method is better for some of the outliers. 

 

       

Discussion and Conclusions 
We have demonstrated two methods (the expansion method and the two-point method) for incorporating quadratic shear terms into 
the interpretation of intercept and gradient results. These corrections, however they are implemented, are seen to improve 
significantly over the standard linear theories. This improvement varies as RJ

2, so that even in the presence of noise it would be 
expected to be important for systems in which RJ is of sufficient magnitude. 

The issues raised in Figure 2 relate to information that is not available and must normally be estimated. γ can be estimated from 
converted-wave seismic data, or from P-wave data along with a locally calibrated mudrock relation. One message of Figure 2 is that 
the RJ estimation is more sensitive to approximations in γ than in Rρ, so one should make the best estimate one can of the former. 
Approximations to Rρ are more difficult, but also more readily forgiven. A reasonable approach for estimating Rρ would be to use a 
locally calibrated Gardner relation. For instance, if calibration yields ρ = Cαn, then the appropriate expressions consist of Eq. (3) with 
A replaced by (1 + 4nγ2) A / (1+n), or Eq. (9) with A replaced by (1 + 4nγ2cos2θmax) A / (1+n). 

The comparison in Figure 3 is valid for the chosen θmax of 30°, but the behaviour of both methods would vary with larger offsets. The 
expansion method would give less accurate results as higher orders of sin2θ become significant, especially when a critical point is 
approached. In such a case one should fit the data to, say, the three-term Shuey relation rather than the two-term, even if the third 
coefficient is simply thrown away after fitting. This would help maintain the integrity of the B coefficient.  An advantage of using the 
two-point formula is that because the expressions are dependent on θmax, they are able to compensate to some extent for the 
deviation from strict quadricity. Hence they perform better than the two-point expansion formula for this θmax. For strong non-
quadratic behaviour the two-point formula may prove insufficient. However it is straightforward to derive a three-point formula, so there 
is potential to use this method with larger offsets as well. 
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