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Abstract 
 
Time-lapse inversion is preferably performed on the difference data that is made between the monitoring and reference seismic 
data. When the difference data is sparse and spiky, spike deconvolution is possibly utilized to invert reflectivity. Logarithmic 
impedance can be further recovered from this inverted reflectivity. However, limitation exits, especially for the ramp and thin layer 
structures, the inverted reflectivity might be incorrectly located using such deconvolution method. The authors of this paper 
propose a new four-step method to deal with this situation. The first step is to integrate or derive the seismic difference data 
depending on the type of the structure. The second step is to use spike deconvolution algorithm to invert reflectivity. The third step 
is to derive or integrate reflectivity back to get the real reflectivity. The final step is to compute impedance from the previously 
inverted reflectivity. 
 

Introduction 
 
The final purpose of reflection seismic exploration is to obtain logarithmic impedance as a function of two-way traveling time. 
Several assumptions have been imposed on seismic data, for example, no multiples, no transmission losses, zero-phase wave 
shape. Logarithmic impedance can be approximately expressed as a function of reflectivity (Peterson, et al., 1955; Oldenburg, et 
al., 1983). If the inverted reflectivity is within the range of 0.3, the error of estimated impedance is about 3% (Oldenburg et al., 
1983). If the reflectivity were less than 0.2, the resultant impedance would be less than 1.37% (Hardage, 1987; Ghosh, 2000). So if 
the optimal reflectivity can be inverted from the seismic difference data, meaningful impedance can be further computed using the 
logarithmic formula. 
 
If the inverted data is sparse, i.e., only limited randomly located samples have non-null values, spike deconvolution can be used to 
locate the spike positions and the corresponding amplitudes. The commonly used methods include the single most likely 
replacement (SMLR) (Kormylo, et al., 1980), iterated conditional modes (ICM) (Lavielle, 1991), iterated window maximization 
(IWM) (Kaaresen, 1998), simulated annealing (SA) (Ingber, 1989) and L1-based simplex algarithm (Press, et al., 1992). These 
methods usually work well for the thick-bed structures whose dimensions are within the resolution limit. However these methods 
are invalid for the thin-bed structure and for the thick ramp structure. For the thin-bed structure, the reflectivity is too close and its 
thickness is below the resolution limit. In this case, the spike of the reflectivity will be located in the wrong position, as will be the 
peak of the amplitude. The response wave shape is identical to that of the 1st derivative of the basic wavelet (Widess, 1973). For 
the thick ramp structure, the reflectivity is no longer a spike, and the corresponding response is identical to that of the integral of 
the basic wavelet at the ramp boundary and close to zero inside the ramp structure (Hilterman, 2001). So, the question here is: 
can we transform the data whose reflectivity is sparse and spiky so that we can utilize spike deconvolution methods to invert 
reflectivity? And how? In this paper, we will try to answer these questions. 
 
The motivation of this paper is to attempt to invert impedance, especially for the thick double-ramp structure and thin layer structure 
from the post stack time-lapse seismic data since these two types of structure are the commonly encountered in the practical time-
lapse seismic monitoring. The difference between monitoring and reference seismic data will be used to invert impedance. There are 
two advantages to do so. One advantage is that less data will be involved in the inversion. The other advantage is that the changes in 
the rock and reservoir properties are concentrated in only small region; and the non-uniqueness of the inverted solution will be 
significantly reduced (Sarkar, et al., 2003; Gluck, et al., 2000). Three synthetic examples will be given here to demonstrate how to 
invert impedance from the post-stack time-lapse seismic data whose structure is thick-bed, thick double-ramp, and thin-bed, 
respectively. 

Methodology 

First we will examine two predictable wavelet shapes with the zero-phase Ricker wavelet as the basic wavelet. The first predicted 
wavelet shape is the 1st derivative of the basic wavelet. The second one is the integral to the basic wavelet. The center of the basic 
wavelet is set zero in time and the amplitude reaches maximum at this position. It is observed that amplitudes of both the 1st 
derivative and the integral zeros. These wave shapes can be correlated to some physical structures. According to Hilterman 
(2001), the wave shape of the response is identical to the basic wavelet for the thick-bed structure, quite similar to the 1st 
derivative of the basic wavelet for the thin-bed structure, and close to the integral of the basic wavelet for the ramp structure (see 
Figure 1, 2). Therefore, the wave shape should be modified to match the thick-bed structure wave shape. In this paper, a new 
method of hybrid data transformation is proposed to correctly invert time-lapse impedance from post stack seismic data. 
 
Examples and Discussion 
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Here three synthetic examples are given to show how to invert impedance using the methods described in the previous section. 
The first example is made for the thick-bed structure, the second example for the double-ramp structure with and without noise, 
and the third  for the thin-bed. 
  
The first synthetic example is for the noise free thick-bed structure shown in figure 3. The central frequency of Ricker wavelet used 
is 30 Hz and the sample interval 2 ms. Same parameters are used in all the other numerical examples. In Figure 3, figure (a) 
shows  the monitor trace, (b) the reference trace, and (c) their difference The purpose of this exercise is to simulate time-lapse 
seismic monitoring situations in which the variations involved in the difference trace theoretically should only contain the fluid flow 
caused variations. Since the thickness of the structure is within the resolution limit, spike positions and their amplitudes can be 
correctly located and determined by using spike deconvolution directly to the difference trace (c). The exact and the inverted 
logarithmic impedance are shown in (d). To compare with the exact impedance, we can see that the impedance has been perfectly 
recovered.  
 
It should be noted here that the impedance is inverted nearly correctly even in the presence of 20% Gaussian noise. Such data 
and the inverted impedance are shown in figure 3-1. As the noise level increases, the accuracy of spike locations will be affected 
and the detected amplitudes will be contaminated with noise. The degree to be affected depends on the noise level. 
The second synthetic example is for the double-ramp velocity model with constant of density. The synthetic data and the inverted 
impedance are shown in figure 4. In this figure, frame (a), (b), (c) have the same meaning as in figure 3. Frame (d) represents 
derivative of the difference data in (c). Frame (e) shows the exact and the inverted impedance. We can see from frame (c) that the 
magnitude of amplitude at the transition point is zero.  We can’ot directly apply spike deconvolution algorithm to this kind of data. 
Now  examine the derivative data. Quite different feature appears in (d). The local extrema of the amplitudes exist at the transition 
points. At this stage, it seems promising to apply spike deconvolution to this data and invert for reflectivity. Using the method 
described in the previous section, we obtained the final impedance shown in frame (e) together with the exact impedance. It is 
obvious that the transition points have been accurately located and the impedance amplitudes are also quite close to the exact 
impedance. This example shows that the method described in the previous section is effective and has the potential to be applied 
to impedance inversion from time-lapse ramp structures. 
 
The final example is generated for the thin-bed (figure 5). Frame (a) to (c) have the same meaning as that in figure 3 and figure 4. 
Response in frame (d) is the integral of response in frame (c). The final inverted impedance is shown in frame (e) together with the 
exact impedance. From frame (c), it is observed that the positions of the minimum and maximum amplitudes differ from the 
boundaries of the thin-bed. The distance between the maximum and minimum amplitudes is greater than the real thin-bed 
thickness. This artifact is caused by the tuning effect. The zero amplitude is located in the middle of the maximum and minimum 
amplitude and corresponds to the mid-position of the thin-bed. It is invalid to apply spike deconvolution directly to this data. 
However, the response from frame (d) shows different features. The response wave shape is identical to the basic wavelet wave 
shape. The condition is satisfied in applying spike deconvolution to this data to recover the reflectivity. The final inverted 
impedance is shown in (e) together with the exact impedance. We can see that accurate thin-bed boundaries have been located 
and only very small deviations of impedance amplitude exist. This example shows that this method works well for the thin-bed 
structure. 
 
 
Conclusions 
 
In this paper, we proposed a new method to invert impedance from time-lapse seismic data. This new method is applicable for the 
thick-bed, ramp, thin-bed structures and even with the presence of high-level noise. No external constraints are required in the 
inversion itself. This method provides great potentiality to invert impedance for the practical time-lapse seismic data, especially for 
the ramp and thin-bed structures that are commonly encountered in the practical situations. 
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Figure 1:  The basic wavelet and its derivative and integral. 
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Figure 2: Seismic response for the thick-bed, thin-bed and ramp 
structues.  

 

                   (a)                  (b)                (c)                  (d) 

Figure 3: Inverted impedance for the thick-bed structure. (a) 
monitor trace; (b) reference trace; (c) the difference between 
monitor trace and reference trace; (d) the inverted impedance 
and the exact impedance.  

 

 
                   (a)                  (b)                (c)                  (d) 

Figure 3-1: Inverted impedance with 20% noise. (a) monitor 
trace; (b) reference trace; (c) the difference between monitor 
trace and reference trace; (d) the inverted impedance and the 
exact impedance.  
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                   (a)            (b)           (c)             (d)           (e) 

Figure 4: Inverted impedance for the double-ramp structure. (a) 
monitor trace; (b) reference trace; (c) the difference between 
monitor trace and reference trace; (d) the derivative of trace (c); 
(e) the inverted impedance and the exact impedance.  

 

 
                   (a)            (b)           (c)             (d)           (e) 

Figure 5: Inverted impedance for the thin-bed structure. (a) 
monitor trace; (b) reference trace; (c) the difference between 
monitor trace and reference trace; (d) the integral of trace (c); (e) 
the inverted impedance and the exact impedance.  


