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Introduction

Seismic survey may acquire large an%le seismic reflections, for example, very long-offset seismic reflections in marine surveP/ and
shallow seismic reflections in the northern Alberta. However, conventional seismic data processing and interpretation technologies
cannot handle far offset seismic reflections. Geophysicists have to do further seismic physics analysis for far-offset seismic reflections
from both large-scale overburden anisotropy and small-scale heterogeneous reservoir by integrafing rock physics and log data. This
work discusses the propagation effects of seismic wave in anisotropic overburden.

Overburden Anisotropy

In sedimentary basin, shales (or clays) and fine layering are two main reasons to cause seismic anisotropy. Wang (2002)

experimentall studied in detailed the anlsotro%y of rocks from different oil fields in the world and showed that inttinsic anisotropy
ranges from 6% to 33% for qP-wave and 2% to 55% for cLSV-wave in shales and usually less 5% for gP-wave and qSV-wave in sands

and carbonates. Thin })erlodlc layered structures can be seen as an overall anlsotrop)(1 (Backus, 19622. Composite anisotropy

groduced by fine shale/sand or shale/carbonate sequence may have stronger anisotropy than shales. Most of rocks in sedimentary
asin are shales and so overburden anisotropy may have significant influence on seismic reflections.
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Figure 1. Phase and group velocities for 10 kinds of shales. The thick and thin lines in Figure 1a stand for phase and group velocities,
respectively. (a) qP-wave phase and group velocities; (b) gSV-wave phase velocity; (c) gSV-wave group velocity.

Seismic propagation velocity in anjsotro% varies with direction. Direction-dependent propagation velocity results in phase and group
velocities are not equal (Winterstein, 1990). Figure 1 shows that calculated phase (FI?U[‘G a for gP-wave and 1b for SV—wave% and
?roup (Figure 1a for gP-wave and Figure 1c for gSV-wave) velocities for 10 kinds of different shales ('Wan , 2002). It can be seen
rom Flg%ge 1a that for qP-wave the propagation velocity is slow along vertical direction (€ = 0") and fast alon horjzontal direction
(6 =90"), the changes of gP-wave phase and group velocities are small for small incident angles (@ < about 30™) and large for
large incident angles (@ > about 30™).

Figure 1b and 1c show the calculated phase and group velocities for gSV-wave. It can be seen that properties of qSV-wave are much
more complex than those of qP-wave. There is a convex portion ‘hlgh propagation velocity) in the middle of progagatlor) angles for
gSV-wave phase velocity. The rapid variation of phase velocity in the convex portion resulfs in the existence of the cuspidal friangle
(lpr cusp) in the curves of group velocity in Figure 1c. No cusp appears for weak qSV-wave anisotropy like as Gulf Coast shale C1.

he cusp means that there are three SV-waves which travel at difterent velocities and arrive at the observation point at different times
the later arriving SV-waves may be separated arrivals, or supetimpose on the first arrival SV-wave and cause constructive an
destructive interferences and results in gSV-wave waveform distortion. Note that qSV-wave cups is different from shear wave splitting
or birefringence phenomenon, the later is the superimposition of horizontally (SH) and vertically (SV) polarized shear waves.
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Figure 2. Phase and group velocities for 10 kinds of shale/sandstone sequences. The thick and thin lines in Figure 1a stand for ﬁ)hase
and group velocities, respectively. (a) gP-wave phase and group velocities; (b) gSV-wave phase velocity; (c) gSV-wave group velocity.
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Figure 2 shows the calculated phase (Figure 2a for qP-wave and Figure 2b for gSV-wave) and T%rouiﬁz figure 2a for gP-wave and
Figure 2c for gSV-wave) velocities for shale/sandstone sequences by taking Backus’s averaging. The thick and thin lines in Fl%re 1a
stand for %hase and group velocities, respectively. It can be seen the anisotropy in Figure 2 is stronger than that in Figure 1. This is
because the heterogeneity between shale and sand is incorporated in anisotropy. The larger the contrast of elastic property between
two kinds of constituent materials is, the stronger the composite anisotropy is. It can be seen that the changes of gP-wave phase and
group velocities are similar to Figure 1g except with a little stronger anlsotroPy. The changes of yelocities by I_ayerln% are small for
small incident angles (& < about30") and Iaage for large incident angles (& > about 30" ).These indicate that anisotropy

roduced by shale/sand sequences can be ignored for small incident angles or near offsets. However, the influence of anisotropy for
arge incident angle is strong as seen in far-oftset P-wave NMO correction.

Figure 2b and 2c¢ show the calculated phase and group velocities for gSV-wave. It can be seen that the changes of qSV—wave_phase
and group velocities are similar to Figure 1b and 1c except with stronger anisotropy because the combination effect of two kinds of
constituent materials for shale/sandstone sequences. The Interference of 3 SV-waves with different arrived times may have significant
influence on shear wave waveform distortion because of thick overburden.

The converted wave seismic survey from long offset seismic reflections shows that reflection shear wave is much more complex than

reflection P-wave. Case study by integrating rock physics and log data would help us to better understand seismic reflection
characterization within sedimentary sequences.
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