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Summary 
 
We  present a new approach to the design of stable and accurate wavefield extrapolation operators needed for explicit depth 
migration.  We split the theoretical operator into two component operators, one a forward operator that controls the phase accuracy 
and the other an inverse operator, designed as a Wiener filter, that stabilizes the first operator.  Both component operators are 
desinged to have a specific fixed length and the final operator is formed as the convolution of the components.  We utilize this 
operator design method to build an explicit, wavefield extrapolation method based on the migration of individual source records.  Two 
other features of our method are the use of dual operator tables, with high and low levels of evanescent filtering, and frequecy-
dependent spatial down sampling.  Both of these features improve the accuracy and efficiency of the overall method.  Empirical 
testing shows that our method has a similar performance to the time-migration method called phase shift, meaning it scales as NlogN.  
We illustrate the method with tests on the Marmousi synthetic dataset.  We call our method FOCI which is an acronym for forward 
operator conjugate inverse. 
 
Introduction 
 
We begin with a 2D wavefield ( ), ,x zy w  which has already been Fourier transformed over the temporal coordinate.  Then wavefield 
extrapolation in the space-frequency domain can be expressed as a spatial convolution given by 

 ( ) ( ) ( )( ), , , , , ,x z z u z W x u k x z duy w y w+ D = - Dò
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where u  denotes the transverse spatial coordinates at input and 
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For constant velocity, equation (1) is the sqace-frequency domain equivalent to the phase shift method, while for variable velocity, it is 
equivalent to the GPSPI (generalized phase shift plus interpolation) of Margrave and Ferguson (1999).  When applied directly, 
equation (1) is very expensive because the operator W  in equation (2) does not have compact support ( i.e. it is infinite in spatial 
extent).  A fast and efficient wavefield extrapolation scheme can be developed from equation (1) if W  can somehow be localized; that 
is if a stable, compactly supported approximation, W% , can be found.  It is well established (e.g. Hale 1991) that most simple 
localizations such as windowing lead to unstable operators.  Here, instability means that, when equation (1) is applied repeatedly in a 
wavefield extrapolation process, the wavefield amplitude grows uncontrollably.  To understand this effect, note that 2 2ˆ 1, xW k k= >  
(wavelike) while ( ) 2 2ˆ exp 1,z xW z k k k= - < >  (evanescent).  A windowing operation is a convolution of the operator and the 
window in the wavenumber domain and most compactly supported window choices cause Ŵ  to fluctuate slightly from the desired 
value of unity in the wavelike region.  Suppose 2 2ˆ 1 , xW k ke= + >  where 1e < < , then the application of this operator in m 
recursive steps results in ( )ˆ 1 1

mmW me e= + » + .  In the subsequent discussion, all operator designs will have nonzero e  and so 
are technically unstable.  However, we will say an operator is practically stable for m steps if ˆ 1 1.2mW me» + <  where 1.2 
represents an arbitrary 20% tolerance.  For example, if a depth migration is to be run with 10m steps to a depth of 5000m, then we 
require stability for 500m =  steps.  We infer that we must have .2 / 500 .0004e < = .  Thus we can tolerate a Ŵ  whose absolute 
value in the wavelike region departs from unity by not more that 4 parts in 10,000. 
 
A stabilizing Wiener filter and the FOCI extrapolator 
 

First we point out two useful properties of Ŵ : 
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where the *  indicates the complex conjugate.  Next, let ( )2W zD%  be any compactly supported approximate wavefield extrapolator 
(where we have suppressed all functional dependence except zD ).  Then we seek another compactly supported operator, IW% , such 
that  

 ( ) ( )1 ˆ2 2IW W z F W z
h- é ù

· D = Dê ú
ê úë û

% %  (6) 

where 0 2h£ £  is an adjustable parameter and 1F -  symbolizes the inverse Fourier transform.  The function of the right hand side 
of equation (6) is a zero-phase, band-limited approximation to a delta function.  If 0h =  it is truly a delta function and hence IW%  will 
be an inverse of ( )2W zD% .  When 0h > , IW%  will be a band-limited inverse of ( )2W zD% .  Since ( )2W zD%  has half the phase of 

( )W zD%  , and since IW%  has the negative of the phase of ( )2W zD%  (regardless of the value of h ), we form the FOCI approximation 
to ( )W zD  as 

 ( ) ( ) ( )* 2F IW z W W z W zD = · D » D% %  (7) 

which follows from the approximate inverse nature of IW%  and from equations (5).  As equation (7) shows, the FOCI operator is formed 
from the convolution of an approximate forward operator with the conjugate of its bandlimited inverse, hence the acronym FOCI.  
Since both ( )2W zD%  and IW%  are compactly supported (by design) then so is FW . 
Equation (6) is easily solved exactly in the Fourier domain, but the resulting IW%  will not have compact support.  Therefore we solve 
the discrete equivalent of equation (6) in the least-squares sense seeking a IW%  with specific compact support.  Then FW  will also 
have compact support that will be the sum of the supports of ( )2W zD%  and IW% .  Equation (6) poses IW%  as a Wiener least-squares 
filter that matches ( )2W zD%  to a particular bandlimited impulse.  
Some general features of this scheme are 

• The phase accuracy is limited by the initial estimate of the forward operator for a half-step, ( )2W zD% . 
• Stability is generally enhanced by a longer IW% .  A good choice for ( )m length W= %  is 3 2m p³ . 
• The parameter h  (equation (6)) controls the degree of evanescent filtering in the final composite operator FW  (equation (7)

).  Larger values of h  give operators that are less stable than those arising from smaller values.  For 0h = , the resulting 

FW  is all-pass (no evanescent filtering), while for 2h = , FW  has the full evanescent filtering expected from theory. 
• The length of FW  in samples, is given by 1op for invn n n= + -  where ( )forn length W= %  and ( )inv In length W= % . 

 
Dual operator tables for increased stability 
 
Since evanescent filtering contributes to operator instability, it is natural to ask if it is required.  Certainly, for a marching scheme in 
constant velocity, only the first few applications of the evanescent filter make any difference to the final result.  This is because the 
wavenumber defining the evanescent boundary, evk vw= ± , does not change.  It follows that repeated applications of the 

evanescent filter in a constant velocity scenario only cause reduced stability.  For the inhomogeneous case, we expect that it is 
similarly not necessary to apply the full evanescent filter on every step.  Therefore, we construct two operator tables for use in any 
depth migration, a first table with strong evanescent filtering and a second with very little.  This corresponds to the choice of two 
different h  values (equation (6)) when constructing these tables.  Then, for most extrapolation steps we use the second table 

corresponding to a small h , but for every jth step, we use the first table with large h . 

 
Spatial resampling 
 
Most wavefield-extrapolation, depth-migration schemes use a fixed operator length that is independent of frequency.  In general, as 
frequency decreases, an operator of fixed size becomes increasingly problematic.  Let xD  be the spatial sample size, then the 

Nyquist wavenumber is nyqk xp= D  while the evanescent boundary is at evk vw= .  Since the spatial sample interval for an opn -

length wavefield extrapolator is also xD , and assuming that opn  is an odd number, the Fourier transform of the operator will have 

samples at wavenumbers ( )0, 1, 2, ( 1) 2xop opk k n= D ± ± ± -L  where 2 ( )opk n xpD = D .  That is, the operator has a sample at 0 

wavenumber and then ( 1) 2opn -  samples distributed out to just shy of nyqk+  in the positive wavenumber band and similarly for the 

negative wavenumbers.  Thus, while the data may have hundreds of wavenumbers below evk , the operator may have only a few, or 

in the worst case only one (at zero), such wavenumbers.  This becomes increasingly likely as frequency decreases or velocity 
increases.  Thus a migration conducted with a fixed operator length, where typically opn  is a number like 21 or 31, will have many 

circumstances where most of the operator wavenumbers fall in the evanescent region.  Such operators have poor phase control and 

are relatively unstable.  As a solution, we advocate spatially resampling of the data at lower frequencies to a sample rate x x¢D > D .  

We break the [ ]min max,w w  frequency band into frequency “chunks”, nchunk  in number, and spatially resample the jth chunk from 

xD  to jx xD > D  such that [ ]/ / / , 0,1j crit jx v xa p w bp a bD £ £ D < Î  where critv  is a velocity chosen to define the highest 
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evanescent boundary of interest.  A good, and always sufficient, choice for critv  is ( )( )min ,crit Tv v x z= , that is use the minimum 

velocity found anywhere in the velocity model.  In our testing to date, we take .7a =  and .9b = .  Specifying a  and b  determines 

the value of nchunk  which typically is near 10.  Thus we are always assured that at least 70% of the wavenumber samples of the 

operator fall within the wavelike region. 
Since we are resampling to a coarser sample rate an anti-alias filter is required to avoid aliasing.  The algorithm used for spatial 
resampling is important since we want to preserve data at the highest wavelike wavenumbers without any loss and utterly reject 
anything that is evanescent.  Furthermore, we cannot tolerate ripples in the passband.  The obvious choice is a truncation operation in 
the wavenumber domain where data at all wavenumbers greater than the new Nyquist are rejected and data at wavenumbers greater 
than critvw  are zeroed.  If the data has n spatial locations before resampling and mj<n wavenumbers are retained after resampling, 

it can be shown that the resulting spatial sample interval will be ( / )j jx x n mD = D so the new sample interval is formed from the 

original by multiplication by a rational number. 
At this time, we conduct spatial resampling only once at the beginning of the downward extrapolation process.  Thus the resampling is 
determined by the shallow part of the velocity model because that is where the lowest velocities are found.  In principle, it would be 
beneficial to repeat the resampling periodically during the downward continuation process.  Once resampled, we preserve the data in 
these frequency chunks with their differing sample rates during the entire process.  Since a typical imaging condition requires a 
summation over frequency, we restore the original sample interval in the application of the imaging condition at each depth. 
 

 
Figure 1:  Time trials comparing the runtimes for FOCI with and without spatial resampling and the runtimes of the time migration algorithm 
called phase shift.  (Left) FOCI depth migration and phase shift time migration are seen to have similar run times over nearly three orders of 
magnitude of dataset size.  Spatial resampling is seen cause about a 20% speedup.  (Right) The same data plotted on a log-log scale show all 
three algorithms with slope near unity for large N which indicates NlogN scaling. 

 
Time trials and Marmousi Images 
 
We have also conducted time trials of the FOCI algorithm with and without spatial resampling and, for comparison, we also used the 
phase-shift algorithm.  Of course, phase-shift is only a time migration method while FOCI is a depth migration but the former is well 
known to show logN N  scaling (where N is the number of points in the dataset) so it is a good point of comparison.  All of these 

algorithms were post-stack implementations.  To conduct these tests, we generated a sequence of nine datasets with the number of 
traces starting at 32 and doubling each time until the ninth dataset which had 8192 traces.  Thus we have scanned over two orders of 
magnitude of dataset size.  Figure 1 (left) plots the resulting run times on a 2.5 GHz PC (with 2 GB memory) versus the number of 
traces, while Figure 1 (right) shows these same data on a log-log scale.  From Figure 3, we can see that FOCI without spatial down-
sampling appears to be as fast as phase shift and that spatial down-sampling appears to speed up FOCI by about 20%.  The 
conclusion that FOCI with spatial down-sampling is faster than phase shift is certainly dependent upon our phase-shift code.  While 
we are confident that our phase-shift algorithm is well written, it uses the standard practice of explicitly calculating the phase-shift 
operator at each depth step.  Certainly precalculating the phase-shift operators and storing them in a table would result in a faster 
algorithm.  The 20% speedup due to spatial resampling is an unambiguous observation.  We expect greater speedups in 3D. 
 
We have conducted a series of tests of the FOCI algorithm in imaging the Marmousi structure with pre-stack depth migration.  The 
Marmousi dataset (Bourgeois et al., 1991) is a 2D, acoustic, finite-difference model created over a very complex structure (Figure 2, 
left) and has been widely used to test imaging algorithms.  The dataset consists of 240 individual shot records of 96 traces each in a 
marine, towed streamer, configuration.  The source and receiver intervals are 25 m and the highest coherent frequencies to be found 
are about 50 Hz.  Prior to migration, we applied a wavelet shaping filter designed to whiten the signal spectrum and interpolated each 
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shot to a receiver spacing of 12.5 m.  Figure 2 (right) is a prestack depth migration (a stack of indivudually migrated shot records) 
using a 51 point FOCI operator.  Comparison shows that FOCI has resolved virtually the entire section and verifies that our algorithm 
is sufficiently stable and accurate for this task.  This migration required about 23 hours on a single 2.5 GHz PC.  Using shorter 
operators and coarser spatial sampling, we have obtained useful prestack depth images of Marmousi in as little as one hour. 

 
Figure 2. (Left) The Marmousi velocity model with dark shading indicating faster velocities.  (Right) A prestack depth migration result using a 
51 point operator designed with the FOCI algorithm. 

 
Conclusion 
 
We have presented a new algorithm for constructing a compactly supported, explicit, space-frequency domain depth migration 
operator.  The operator is designed by first truncating the exact operator for a half-depth-step to a desired length and then designing a 
fixed-length, least-squares, band-limited inverse for the truncated operator.  The final FOCI operator is formed from the convolution of 
the forward operator with the conjugate of its band-limited inverse.  We have demonstrated that this operator can be constructed with 
good stability and phase accuracy.  We have then implemented pre and post-stack explicit depth migrations with this operator design.  
Significant innovations in our depth migration algorithms are the use of dual operator tables, with low and high levels of evanescent 
filtering, and spatial down-sampling of the lower frequencies.  These innovations increase operator accuracy and stability as well as 
shorten the overall computation time.  Testing of this algorithm shows that it scales approximately as order NlogN over at least three 
orders of magnitude of dataset size.  Excellent images are now being obtained with both pre and post-stack depth migration. 
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Notice of Patent Application 
 
A US patent application describing a unique FOCI™ process is being considered and is currently in the due diligence stage.  The patent 
application will be drafted to contain language and claims describing the design of a stable operator by the forward-operator-conjugate-inverse 
method, the use of dual operator tables to reduce evanescent filtering, and spatial down-sampling as a method to increase operator 
performance and reduce computation time. 
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