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Introduction 

A chief problem in seismic data processing is the filtering of unwanted events like ground roll and multiples. Methods to deal with 
this problem often exploit moveout or curvature differences between offending events and the events one would like to preserve 
(primaries). In particular, removal of multiples based on moveout discrimination can be attained via parabolic and hyperbolic 
Radon transforms. In the parabolic transform, seismic data (after normal-moveout correction) are assumed to be composed of a 
superposition of parabolas; in the second case, the data are assumed to be a superposition of hyperbolas.  Methods exist to 
enhance the resolution of both hyperbolic and parabolic Radon transforms (Thorson and Claerbout, 1985; Sacchi and Ulrych, 
1995). In both cases, the operator capable of inverting the Radon transform is constructed in such a way that the Radon panel 
exhibits minimum entropy or maximum sparseness (synonymous used to describe a distribution of isolated events in the Radon 
panel). The sparseness assumption might not be optimal when there is a mismatch between the integration path of the Radon 
operator and the spatial-temporal signature of the seismic event. Amplitude variation with offset can further complicate the problem, 
as described by Spagnolini (1994). It is clear that assumption of sparseness or simplicity can lead to erroneous results when there 
is a mismatch between the operator and the data waveforms.  The latter can be overcome by constructing local operators. In other 
words, we propose to use operators that match the structure of the wavefield on small spatio-temporal apertures. Alternatively, 
one could attempt a much more ambitious path where the operators are extracted from the data (data driven process). This paper 
describes a method to construct local Radon operators. We show that these operators can be designed with any integration path. 
This new class of Radon operators is implemented through a strategy that is based on Generalized Convolution (GC) and 
Generalized Deconvolution (GD) (Sacchi et. al, 2004). We describe this idea in the following section. 

Generalized convolution and linear Local Wavefield Operators 

In the classical Radon transform we attempt to represent the data with a finite number of waveforms defined over the data 
aperture by means of the following expansion: 

D = αkΦk

k

∑ ,                                                                                                       (1) 

where Φk,k = 1,N  are the basis functions  (waveforms with linear, hyperbolic or parabolic paths) and α k,k = 1,N  are the 

coefficients of the expansion. In general, the coefficients Φk,k =1..N  represent the non-zero coefficients of the Radon panel. In 

the new approach we propose to adopt basis functions that are local (waveforms that operate on a sub-aperture of the full data 
aperture). In this case we propose to represent the data using the following model (GC): 

D = Fk ⊗ Bk

k=1

N

∑ ,                                                                                   (2) 

In equation (2), the data are represented via the convolution of compact Local Wavefield Operators (LWO) Bk  and an unknown 

suite of filters Fk,k =1,N . The symbol ⊗  represents multi-dimensional convolution. The problem reduces to finding the filters Fk  

given the data D and the operators Bk . It is clear that such a problem needs to be solved using an iterative method that takes 

advantage of fast convolvers. In our algorithm we have adopted a Conjugate Gradient method with optimized convolution 
operators computed via multi-dimensional FFTs. The Local Wavefield Operators (LWO) proposed by Sacchi et al. (2004) consists  
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of waveforms of constant ray parameter defined on a small aperture (5-7 traces). A suite of N=25 LWOs were numerically 
designed for the purpose of computing local linear Radon transforms (local slant stacks). The operators are shown in Figure 1. 
Each operator is parameterized with a ray parameter, a seismic wavelet and an operator aperture. The ensemble of operators was 
constructed with N=25 ray parameters spanning the local dips in the data. In Figure 2 we examine the decomposition of a seismic 
record containing hyperbolic and linear events. Multi-dimensional generalized filters Fk  are first estimated by inverting equation 

(2). Then, a subset of operators Bk,k = kl,...kh  is used to reconstruct the data. The reconstructed data are computed with the 

following expression: 

  

) 
D = Dk

k= kl

kh

∑ , Dk = Fk ⊗ Bk                                                                       (3) 

In our example, kl=11, kh=15. Each member of the sum in equation (3) ( Dk ) is called a mode.  The k-mode is a panel of size 

equal to the size of the data; it captures waveforms primarily and locally modeled by the operator Bk . We have reconstructed the 

data using dips that locally model the hyperbolas. Residual energy from linear events leaks in the reconstructed model of 
hyperbolas. The signals are not orthogonal to each other and therefore, some degree of leakage is expected. Regularization 
strategies for inverse problems can be adopted to alleviate the aforementioned problem. This is discussed in the following section. 

The procedure outlined above was also used to eliminate ground roll from a shot gather from the WCSB (Figure 3). In this 
example, N=41 LWOs were adopted for the generalized deconvolution. A subset of 11 modes was retained to reconstruct the data.  

Parabolic Local Wavefield Operators 

We adopt the same mathematical structure to model seismic data but now the LWOs represent waveforms with parabolic moveout. 
Each waveform is parameterized by a curvature. Figure 4 displays the synthetic seismic record used to test our algorithm. The 
goal is to separate the two events using generalized deconvolution. A suite of 11 LWOs with parabolic moveout is depicted in 
Figure 5. In Figure 6 we portrayed the filters Fk ; the associated modes are portrayed in Figure 7. In this case the filters were 

computed using the least-squares method. The modal decomposition cannot capture the individual waveforms in the original data. 
The least squares method yields a solution where the energy is distributed over all the modes. We can circumvent the problem by 
introducing sparse regularization into the solution of equation (2) (Sacchi and Ulrych, 1995; Trad et al., 2003). Now, we observe 
that the ensemble of filters can capture the two signals quite well (Figure 8). The modal decomposition in Figure 9 has correctly 
identified the two waveforms. It is clear that the full reconstruction of the data (sum of all the modes) has provided the right 
reconstruction for both the Least Squares and the Sparse Least-Squares solution. The advantage of using a solver with 
sparseness constraints is quite evident: we have achieved simplicity in the filters and event separation in the modes.  

Summary 

We have presented a generalized convolution/deconvolution approach to solve the problem of waveform separation and filtering. 
The methodology is designed to represent seismic data in terms of Local Wavefield Operators. The ideas presented in this paper 
have numerous applications: random and coherent (aliased) noise attenuation, interpolation beyond aliasing, wavefield separation, 
filtering of diffracted multiples, etc. Similarly, these ideas can lead to interesting algorithms for migration velocity analysis where 
the focusing power of the filter ensemble may well be used for velocity estimation.  
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Figure 1. Linear Local Wavefield Operators (N=25). 

Figure 2.  Synthetic shot gather (left). Reconstruction using 
modes k=11…14 associated to the Local Wavefield 
Operators in Figure 1 (center). Residual panel (right). 

Figure 5. Local Wavefield Operators with parabolic 
moveout. 

Figure 4. Synthetic example used to test 
the decomposition with parabolic Local 
Wavefield Operators. 

Figure 3. Linear noise removal using Generalized 
Deconvolution.  Linear Local Wavefield Operators 
were deconvolved from the data. The modes 
capturing dips associated to the ground roll were 
eliminated from the data (right). 
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Figure 6. Filters computed using the least-squares method with 
no regularization.  

Figure 7. Modes obtained by convolving the filters from 
Figure 6 with parabolic Local Wavefield Operators. The last 
sub panel is the full data reconstruction (sum of all modes). 

Figure 9. Modes obtained by convolving the filters from 
Figure 8 with parabolic Local Wavefield Operators. The last 
sub panel is the full data reconstruction (sum of all modes). 
 

Figure 8. Filters computed using the least-squares method with 
sparseness constraint regularization.  


