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Summary  
 
Advances in processing techniques have led to more stringent requirements on information content in the input seismic data. 
Although not a substitute for well sampled field data, interpolation has provided some useful data preconditioning that in particular 
allows migration techniques to work better.  

Seismic data interpolation has been around for long time, but only recently have we been able to use complex multidimensional and 
global algorithms that have the capability to infill large gaps in 3D land surveys. This innovation brings a great potential for 
improvement but, for this technology to become useful, first many questions need answers: which are the best domains to 
interpolate? What is the optimal size of operators given a particular level of structural complexity? Should we pursue a ideal geometry 
for migration or should we stay close to the input geometry in order to minimize distortions? How does sampling in multiple 
dimensions affect our traditional aliasing constraints? How can we infill large gaps without using a model for our data? Are 
irregularities in sampling beneficial?   

In this paper, we show some examples with Minimum Norm Weighted Interpolation, sparse DFTs and other related techniques, and 
we discuss some of these issues when trying to extend real data to well sampled migration-friendly data.   

Introduction 
 
Interpolation of land data presents many challenges, some of them quite different from those of interpolating marine data sets. In 
general, all 3D geometries have very poor sampling along one or more dimensions. As a consequence migration suffers from artifacts 
when applied to poorly sampled data, because migration algorithms work based on the principle of constructive and destructive 
interference.  

There are many different approaches to attack this problem. The only perfect solution is to acquire well sampled data; all the other 
approaches attack the symptoms of the problem rather than the problem itself, and there is no guarantee that they will really solve it. 
However, given that in the real world often we cannot go back to the field and fix the actual problem, we have to address this issue 
using all the processing tools at our disposal.  

It is important to realize that most seismic algorithms implicitly apply some sort of interpolation because they assume correct 
sampling. If a sample is missing the missing value is supposed to be either zero or similar to its neighbouring values. If this 
assumption is not good enough we have to apply a separate interpolation algorithm where explicit assumptions can be made, for 
example, assuming that frequencies beyond Nyquist are zero (sinc interpolation). This is what interpolation algorithms are useful for, 
preconditioning the data with a reasonable constraint. 

There are many interpolation methods, some more successful 
than others and some more complex than others. As a general 
classification, methods are local or global (Figure 1). Local 
methods (for example triangulation, nearest neighbour, etc.) tend 
to be quite robust, fast, adaptable and easy to implement.   
Unfortunately, they cannot handle very large gaps, because 
either they need nonexistent local information (there is nothing 
around the trace to interpolate) or they do not have enough 
information to overcome aliasing. On the contrary, global 
methods are often slow, not very adaptable, and difficult to 
implement.  However, they can fill in missing data by using 
information obtained from more distant data. This allows them to 
overcome aliasing and fill in very large gaps. Most practical 
methods will fall between these two extremes.   

A related distinction is the number of dimensions the algorithm 
can handle simultaneously. When applying one-dimensional 
methods the user has to decide in which order to interpolate the different dimensions. Often one of the dimensions is so poorly 
sampled that it becomes almost impossible to fill in the gaps. Multidimensional methods can, in principle, obtain information from a 
well sampled dimension to infill the poorly sampled dimension automatically.  

Most well-known and accepted interpolation algorithms have been developed for marine surveys. Marine data usually have a very 
well sampled direction (inlines) and a very coarsely sampled direction (crosslines). Many algorithms have been quite successful in 
infilling the crossline direction, even in the presence of aliasing and complex structure. Most of these methods do not try to achieve full 
azimuthal coverage. In interpolation for land data we need to consider sampling along the offset and azimuth direction. This makes 
the problem more difficult than for marine data.  

Figure 1 - Local vs. global interpolation methods. 
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A few global multidimensional methods have been published recently. One of the most promising algorithms is Minimum Weighted 
Norm Interpolation (Liu and Sacchi, 2004). This algorithm can operate on the data in all dimensions simultaneously. For example, we 
have applied this method to four spatial dimensions (Liu et al. 2004). Although this new capability of filling in several dimensions offers 
a world of possibilities, it also creates numerous questions: Which dimensions to use? How large should the input be? How regular do 
these dimensions have to be? How to cope with efficiency issues in particular for irregular sampling? Indeed, for fully irregular data, 
expensive Discrete Fourier computations (as opposed to Fast Fourier Transforms) are required and four dimensional methods seem 
to be out of reach for now. 

The issue of which dimensions to interpolate is critical. If we want to precondition the data properly for Kirchhoff migration, then a full 
and uniform coverage of offsets and azimuths would be desirable. Unfortunately, this would increase the size of the survey by an 
order of magnitude and make migration too expensive. In addition, it is well known that good results can be achieved with much less 
than perfectly sampled data, but it is not clear how sparse the data can be. By simulating full coverage surveys it is easy to see that 
they lead to geometries very different from what we typically acquire. Therefore, going from one to the other is a serious challenge. 
For example, Figure 2 shows original and interpolated receivers for a geometry where a constant (far) offset plane was interpolated to 
achieve full coverage in cmps (no azimuth coverage was attempted). The points represent receiver locations, the colour the shot to 
which the receiver belongs. The receiver locations created with 
interpolation tend to fill the space between the receiver lines that were 
acquired in the field. 

A reasonable approach is to stay as close as possible to the original 
geometry. This implies infilling shot and receiver lines, while keeping the 
original traces unchanged. This method tends to improve on acquisition 
artifacts of large amplitude and wavenumber. Regularity can introduce 
short wavelength artifacts while irregularity seems to eliminate them. This 
leads to another question: How regular do we want the output data to be? 
It seems certain that some amount of irregular sampling is beneficial. 

Methods 
Some of the methods we currently use are: 

Minimum Norm Weighted Interpolation MWNI (Liu and Sacchi, 2004).  

The available data, d, are the result of a picking matrix (sampling), T, 
acting on an unknown fully sampled data set, m. The unknown data set is 
subject to the constraint of that it has the same multidimensional spectrum 
as the original data. This constraint can be calculated with 
multidimensional Fast Fourier Transforms Fnd. To solve for the unknown data set (the interpolated data set), a cost function is defined 
and minimized using standard optimization techniques. The cost function J is defined as folllows:   

W
mTmd λ+−= 2

J , 

with a norm calculated as:  

mmm ndknd p FF
21 −−= . 

Fnd is the multidimensional Fourier transform and ND is the dimension of the data with ND =2, 3 or 4 for 2D data, common azimuth, or 
3D data, respectively. pk is the spectrum of the unknown data, obtained by bootstrapping or iterations. This method is very fast in spite 
of being very global, because it uses FFTs. The main drawback is that the true sampling of the data has to be an integer multiple of 
the required final sampling along each dimension.  This is equivalent to binning the data along the chosen dimensions. 

Sparse DFT (Duijndam et.al., 1999),  

This method is also based on optimization and consists of: 

1) Calculating the multidimensional spectrum of the data subject to a constrain of sparseness. This is, as above, achieved by 
defining a cost function and minimizing it: 

W
mFmd λ+−= 2

J  

A difference from the previous case is that the operator F is itself a multidimensional Fourier transform. In practice only two 
dimensions are used, because this operator can become very large. 

2) Predicting the data from the model:   Fmd = . 

We implemented this method using discrete Fourier transforms with the purpose of taking into account the sampling interval. In 
principle, this method is intended to deal with very irregular data where the assumptions in MWNI are violated. Alternatively, this 
method can be used as a first regularization of the data to a grid, without attempting to infill them densely. Once the data have been 
moved to a regular grid, MWNI can be used to upsample it to a denser grid. 

Figure 2 - Receiver positions for full CMP coverage 
in one offset range. 
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Antileakage Fourier Reconstruction (Xu et. al., 2004): this method has some similarities with the sparse DFT, but the model is 
obtained by iteratively eliminating the non-orthogonality that arises from irregularly sampled Fourier transforms. It has been used 
successfully in complex marine environments and currently we are adapting it to land interpolation (Xu et.al. 2005).  

Fxy interpolation : This method assumes that the data are locally linear, which is a valid assumption as long as the size of the 
operators is small. As a consequence of using this model, aliasing can be successfully overcome, although big gaps are difficult to 
infill.  Several passes of this method can be used to progressively infilll data. In our experiments we use several passes along inlines 
and crosslines in the cmp domain. 

Local methods: We are also experimenting with simpler local methods like triangulation or local tau-p transforms since they are very 
reliable for the interpolation of small gaps. 

Examples 
 
Here we show some examples with MWNI, leaving more complete examples for the actual presentation. Figure 3 shows a MegaBin 
survey (provided by Encana). In this case an extra line of receivers is added to reduce the sparse crossline sampling. 

In this example, only receivers have been interpolated but a two pass approach is sometimes used where we first interpolate 
receivers, then we sort to receiver gathers and interpolate shots. Interpolating both shots and receivers has the advantage of filling the 
near offsets but it can lead to data with a higher level of smoothing, since the second pass uses interpolated data to create more 
interpolated data. There are many unanswered questions in this regard. 

Figures 5 and 6 and show a view of a shot before and after interpolation. Notice that big gaps in one direction may be smaller in the 
other (orthogonal direction). This is what makes multidimensional interpolation very powerful in filling large gaps. 

 

 

Figure 3 - Shot patch for Megabin survey before 
interpolation. 

Figure 4 - Shot patch after interpolation. 

Figure 5 - Shot before interpolation. Figure 6 - Shot after interpolation. 
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Figures 7 and 8 show a time slice of the stack from a MegaBin survey where two receiver inlines and one receiver crossline have 
been inserted between existing ones. The initial been size was reduced from 35x70m to 17.5x17.5 m.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions 
 
3D land geometries are always subsampled along one or more dimensions. As seismic processing becomes more demanding in 
terms of analyzing prestack data in detail, interpolation has become a very useful tool to condition the data for migration. Given that 
seismic data live in five dimensions and there are different choices for them, interpolation is far from being a solved problem. The 
perfect input data set for Kirchhoff migration may contain full cmp coverage for all offset ranges, and uniform azimuth distribution, but 
this is far cry from the data obtained with typical acquisition geometries. Therefore, there is a conflict between the goal of a perfect 
data for migration and preserving as much as possible from the original data. 

New interpolation algorithms allow us to look at several dimensions at once. This has a large number of benefits but also unsolved 
problems, particularly if the method is global. On the other hand, relaxing the goal of globality, the method may fall into the problem of 
not having enough input to predict the output, in particular for large gaps. An optimal solution is somewhere in between global and 
local methods. 

In this paper we have discussed several approaches MWNI, sparse DFT and other methods, but more than the algorithm used to 
calculate the interpolated traces, it seems that the more important issue to decide is the domain where to apply it, and the best choice 
in terms of size of operators.  Finally, but still important, is the question of exactly how much data we need to interpolate, where to put 
them, and how much we can trust them. 

These decisions are related to considerations of aliasing, complexity of the structure in different domains, efficiency, capability to 
manage large gaps and very irregular sampling. We are just starting to scratch the surface of a difficult problem. The more we learn 
about it, the more complex it seems.   
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Figure 8 - Time slice from stack of interpolated data. Figure 7 - Time slice from stack of original data. 


