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Seismic Traveltime Inversion 
Emil Blias, Revolution Geoservices Inc., Calgary, Canada  

Introduction 
Geophysical inversion can be defined as a procedure, which allows us to obtain a subsurface model, which fits observed data. In 
this procedure, we use forward modeling to establish the connection between the subsurface model and the observed data. If M is 
a subsurface model and D is observed data then we can write: 
 

F(M) = D      (1) 
 

where F is a forward modeling operator. This operator calculates geophysical data D for a given subsurface model M. Then 
inversion can be described as solving equation (1) for unknown model M. As the inverse problem is usually ill conditioned, 
additional constraints are very useful and play an important role in traveltime inversion. Instead of solving equation (1), we 
minimize an objective function using L2 (the least square method) or L1 norm, which is more stable when there are spikes and 
large errors in traveltimes. 
 

Traveltime Inversion Scheme 
For seismic traveltime inversion, we can use the same model (1) where D is observed traveltimes, M is a depth velocity model and 
F is a forward modeling operator, which calculates reflection traveltimes. We will consider some specific features, which 
distinguish traveltime inversion from the other inversion problems, such as full waveform inversion, migration, AVO inversion etc. 
Seismic traveltime inversion can be considered as a procedure, which includes three main steps: 

• Traveltime determination 

• Initial model building and editing 

• Improving initial model (layered traveltime inversion or tomography) 
 

Each step has its own problems and requires automatic procedures along with manual work and geophysicist interference. Let’s 
shortly consider the main problems in each step.  
 

Traveltime determination. 
a. To obtain observed reflected traveltimes D is a separate and not an easy problem. In theory, one can manually pick events on 
the gathers, but in practice, this is usually done by automatic velocity analysis (Taner and Koehler, 1969). The main reason for not 
using autopicker is that any auto-picker will meet difficulties working with prestack data because of noise. Even for poststack data, 
where the noise level is much less, auto-picking is a big problem and always needs manual editing and geophysicist interfering. 
For prestack data, the geophysicist interference in picking events will be much greater. Taking into account the size of the prestack 
data, in most cases it’s just impossible to use this approach.  
 

b. To obtain traveltimes, we usually use velocity analysis. This procedure is much more stable than event auto-picking and the 
main reason for this is that in the velocity analysis we mostly calculate one parameter (hyperbolic approximation coefficient 
1/VStack

2) or at most two, if we use a non-hyperbolic approximation. It can be shown that increasing the number of estimated 
parameters, even by one, makes the others much less reliable. In the stacking velocity estimation, we are not interested in AVO 
effects and we want not to be dependent on them. At the same time, if we have the Class II AVO response (Rutherford and 
Williams, 1989), when the events have polarity reversals, we have to take into account this AVO effect because we may have no 
response on velocity spectra. For the traveltime inversion, we need to know traveltimes for each CDP point. Then automatic high-
density velocity analysis becomes an important tool for traveltime determination. This kind of analysis has been developed in 
Revolution Geoservices Inc. It takes into account horizons, interval velocity constraints and using Dix’s formula generalization 
(Blias, 2003).  
c. As we often have coherent noise on the prestack data, we have to know where to look for the primaries. It means that we have 
to have some a priory information about traveltime characteristics. In terms of the velocity analysis, it’s usually information about 
stacking velocity ranges. If we don’t have strong shallow velocity anomalies then we can consider stacking velocities close to 
some kind of average velocities. In the presence of overburden velocity anomalies, the difference between stacking and average 
velocity can be arbitrarily big and there should be special procedures for automatic velocity analysis. In this case, an analytical 
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connection between stacking and interval velocities can be helpful (Blias, 1981, 2003b, 2005). Fig. 1 shows the result of the high-
density automatic velocity analysis 
 

. 
Fig. 1. High-density automatic traveltime picking 

 

d. There is an important question about 3-term velocity analysis in order to decrease the bias of stacking velocities. Usually, the 
two-term velocity analysis is applied to prestack CDP gathers. If we have a long spreadlength (bigger than 1.5 reflector depth) we 
can try to determine the third term. For this we can use Malovichko’s formula (Malovichko, 1978) 
 

2

2
2
00

11
1)(

RMSV

x
St

SS
txt ++







 −=      

where 

   
2

1

1

3

1

/









=

∑

∑∑

=

==

n

k
kk

n

k
kk

n

k
kk

vh

vhvh
S   

For Western geophysicists, this formula is known as the shifted hyperbola approximation and was published by Castle in 1994 
after translation of Malovichko’s derivation of this formula. Using a statistical approach, it can be shown that simultaneous 
determination of stacking velocity and coefficient S leads to increasing standard deviation of VNMO estimation by approximately six 
times. It implies that we should be doing three-term velocity analysis only for the data with big offset/depth ratio and low noise 
level.  
 

Initial model determination 
If we don’t have shallow velocity anomalies, Dix’s formula can be used for the interval velocity estimation. It means that we can 
use a local 1-D model to determine interval velocities. There are many factors that influence the result of this formula (Al-Chalabi, 
1979), but the main is non-linear changes of the overburden velocities and dipping reflectors with angles more than 150. If there 
are no reflectors with big dips, the main factor, which can completely destroy Dix’s interval velocity estimation, is nonlinear 
overburden velocity changes (Blias, 1981, 1988, 2003, 2005). In this case we have to use some generalizations of Dix’s formula to 
obtain appropriate approximation to the depth velocity model (Krey and Hubral, 1980, Goldin, 1986, Blias, 2003). These formulas 
use a layer-by-layer approach, which has it’s own pitfalls.  It’s interesting that for initial velocity depth model estimation we don’t 
use equation (1). We can mention that the number of layers in the initial model depend on the number of reliable reflections that 
we can pick on poststack data and find them on prestack data, using velocity analysis. Some constraints should be used at this 
step. Interval velocities, obtained by using Dix’s formula, are always biased because of non-hyperbolic NMO in layered ground. 
Their values depend on actual acquisition geometry. We can avoid this biasing, using an approach, suggested by Blias in 1983. To 
improve the initial depth velocity model, we can use iterative approach, described by Goldin (1986). 
 

Improving initial model 
After traveltime determination and building the initial depth velocity model, we can solve equation (1). We may change the 
parameterization of the model, if we use tomographic approach, or keep it the same if we use basic functions to describe reflection 
boundaries and interval velocities between these boundaries (Goldin, 1986, Blias and Khatchatrian, 2003). In the presence of 
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shallow strong velocity anomalies, stacking velocities (and, consequently, traveltimes) depend on the second-order derivatives of 
the anomalies (Blias, 1981, 1988, 2003, 2005a, 2005b). This implies a smoothing problem (Blias and Gritsenko, 2003) for the 
curvilinear boundaries and laterally changing interval velocities as well. While raytracing, we have to take care not only about the 
boundaries and interval velocities but also about their second-order derivatives. To improve the initial model, we minimize the 
difference between the observed and calculated traveltimes (Goldin, 1986). In traveltime inversion we are looking for the lateral 
velocity changes only between the reflectors, that is, for interval velocities. In the presence of shallow velocity anomalies, some 
other problems arise (Blias, 1988, 2005a, 2005b) 
 

Reflection tomography (Bishop et al., 1985, Stork and Clayton, 1991, 1992) utilizes another approach for improving reference 
depth velocity model. Can it improve the vertical resolution? Does the tomography give something extra compared to the layered 
traveltime inversion? Formally speaking “YES”, but essentially “NO”. By tomography we understand cell-based parameterization of 
a velocity distribution v(x,z) or using some functions with vertical changes between the reflectors. Reflectors are parameterized 
independently from the cells (Stork and Clayton, 1991). In the same paper, the authors state that the problem is “ill conditioned 
because several aspects of the model cannot be resolved with the given data… The poor behavior generally comes from 
instabilities of using a gradient approach with the given starting model. All the solutions should be considered suspect. Inversion 
will not replace the need for the user to make subjective decision”, p. 485. 
 

This does not sound very encouraging and at the same time does not tell us the real reason of the poor behaviour of our 
tomographic solution. The reason for this poor behaviour is that, in the tomographic approach, we try to use a velocity grid, which 
is not directly connected with the reflectors (“The velocity field is parameterized independently of the reflector positions as an 
effective continuum of desired accuracy. This parameterization places no inherent restrictions on the structure the velocity field 
can take on.”, Stork and Clayton, 1991, p. 485). Generally speaking (with some exclusions), we should not expect to reliably 
determine any vertical velocity changes between the reflectors. When we use the cells between the reflectors or any other velocity 
parameterization, which is not connected with reflectors (includes vertical velocity changes between the reflectors), we just make 
the matrix very ill-conditioned and only hide a real problem but do not solve it. I will theoretically prove this statement for the 
laterally homogeneous ground and will confirm by a simple numerical example. It implies that we should not vertically divide layers 
between the reflectors, using cells, and try to find the velocity in the cells. Instead of this, we should consider layers as vertically 
homogeneous. What velocity we actually find, is another question. For the laterally homogeneous medium, we find RMS velocity in 
each layer. For laterally changing layer, it’s hard to answer the question but, anyway, mostly we can determine only lateral 
changes in the interval velocities. It implies that the vertical resolution in our depth velocity model estimation depends on the 
number of reflectors (corresponding traveltimes) that we can define from the data. 
 

The reason why reflection tomography cannot improve vertical resolution compare to traveltime inversion is the fact that some 
vertical changes in the velocity imply the second-order changes in the traveltime. To show this, let us consider a medium with two 

horizontal layers. We can write parametric traveltime equations with parameter λ (Taner and Koehler, 1969): 
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Instead of the velocities v1 and v2 let us consider two parameters v and β: 
 

v1 = v(1-β),  v2 = v(1+β)   (3) 
where 

   v = ½ (v1 + v2),  β =  (v2 - v1)/ (v1 + v2)   (4 ) 
 

Then equations (2) can be written this way: 
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Equations (5) show that the time t is an even function of the parameter β. Then in the Taylor series in the power of β, we have 
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   t(x,β) = t0(x) + ½ t1(x)β2 + t1(x,0)β4 +…   (6) 
 

Function t0(x) corresponds to homogeneous layer and is a hyperbola. Function t1(x) 

is the second-order derivative with respect to β and can be obtained from parametric 
equations (5) or from Malovichko’s formula. The explicit expression for this term is 
quite complicated and is not suitable for visual analysis. 

This equation shows that traveltime t slightly depends on the parameter β, that is, on 
the small changes in the interval velocities v1 and v2. Equation (6) implies that if we 
have a layer, divided by an additional horizontal boundary into two horizontal layers, 
we cannot have reliable estimation of the interval velocities above and below the 
additional boundary, using only traveltime function from the bottom of the layer. This 
means that we cannot find feasible estimation of vertical velocity changes without 
additional (a priory) information and therefore should consider this layer as vertically 
homogeneous. It also implies that the velocity parameterization should not treat the 

velocity component and the reflector component as separate classes. We should 
Fig. 2. Traveltimes difference for different  consider interval velocities between the reflections and to improve vertical resolution  
depth velocity models    of the depth velocity model, we have to pick more reflections.   

    Here is a simple numerical example, which shows that we cannot determine vertical 
 changes even when they are significant. Let us consider a homogeneous horizontal layer. Reflected traveltimes have been 
calculated for the bottom of the layer. Fig. 2 shows the difference between traveltimes for the initial homogeneous layer and the 
two-layered model with different velocities. From it we can see that even for the model with the velocities 2.8 km/s and 4.2 km/s 
(50% difference!) and Offset/Depth ratio equal 2, we have almost the same traveltime function as for the homogeneous layer. This 
example, with the above consideration, confirms that in most cases we can only determine velocities between the reflectors. In 
other words, we should divide the ground into several layers according to picked horizons and consider determination of these 
layer velocities. With shallow velocity anomalies, the situation is different (because of their strong influence on stacking velocities 
from deep layers) and we can determine them from reflection using some additional constraints and assumptions. 
 

Conclusions.  
Seismic traveltime inversion scheme has been considered. It is composed of three main steps. High-density automatic velocity 
analysis has been developed in order to prepare data for traveltime inversion. Constraints are included in this analysis as well as 
Dix’s formula generalization. To obtain an initial depth velocity model, we can use generalization of Dix’s formula and an iterative 
algorithm. We can expect to find lateral changes in the interval velocities between the reflectors. Using reflection tomography, that 
is putting additional cells (or boundaries) between the reflectors, makes the inverse problem very ill-conditioned. In most cases, 
the tomographic approach does not allow us to improve vertical resolution compared to a layered traveltime inversion scheme 
when we consider vertical homogeneous layers between the reflectors. 
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