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Abstract 
We have developed a new method for building 3D petrophysical background models that 
incorporate both large scale trends in lithology and smaller scale variations in physical properties. 
The method stems from the need for an accurate representation of the distribution of physical 
properties within a given geological setting, in order to properly model the seismic response of the 
target of interest embedded within a realistic, heterogeneous medium. This degree of heterogeneity 
can be assessed using the stochastic variations observed in borehole log data. The autocovariance 
of the fluctuations is fit to a function characterized by a scale length that is proportional to the 
degree of homogeneity of the medium surrounding the borehole. This function and scale length can 
then be used to generate synthetic data in one, two and three dimensions that accurately represent 
the variations in physical properties of the medium, including any anisotropy in seismic velocities, 
attenuation, porosity, etc. 

We use these detailed petrophysical models to simulate 3D elastic and viscoelastic seismic wave 
propagation in random media. Seismic models thus far have shown that exploration target 
responses are partially obscured by the scattering of seismic energy off small scale heterogeneities. 
By accurately modeling this kind of effect we can begin to design seismic surveys that better 
capture AVO or AVA responses of specific targets. Another of the direct applications of this method 
is the “filling in” of sparse datasets with simulated log data, notably for the purposes of kriging and 
inversion. 

Introduction 
We can often generate complicated geological models based on geophysical and borehole log data. 
Information about lithology is generally extracted from bulk variations in logs; the smaller, higher 
frequency fluctuations are simply treated as a type of noise. Subsurface models derived in this way 
do not take advantage of the full sampling of physical properties available through logging, and lack 
an accurate representation of the inherent heterogeneity of the medium. The heterogeneous 
component of a medium can have a large influence on seismic wave propagation, depending on the 
magnitude of the variations. Whether a structure is “transparent” to seismic waves or whether it will 
scatter energy in any defined pattern depends on the scale (in all three dimensions) of the 
stochastic component of physical property distributions. This effect is readily seen in seismic images 
of impact craters for example, where the surrounding structure is interrupted by the semi-
transparent zone within the impacted bedrock (Figure 1). This zone of high brecciation or possible 
melting is characterized by small scale lengths in both vertical and horizontal directions, whereas 
sedimentary layers such as those in Figure 1 can have quite large horizontal scales. 
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Figure 1.  Seismic section over the Bosumtwi impact crater, Ghana. The sediments overlying the crater show up 
as clear semi-horizontal reflectors in contrast to the impacted basement rocks that show no internal reflections 
[Scholz et al., 2002].  
 
To completely describe a medium it is therefore necessary to use statistical models to describe the 
distributions of parameters such as seismic velocities and densities. In sedimentary environments 
for example, this has lead to stochastic models of large scale permeability distributions 
superimposed on small scale heterogeneity to represent different facies and their inherent intra-
facies variability [Lu et al., 2002]. For hardrock environments or crustal scale models, the small 
scale heterogeneous component is often superimposed on some deterministic trend (often simply 
taken as a linear best-fit to the log data) [see Holliger (1996) or Goff and Holliger (1999) for 
example]. The parameters to describe heterogeneity can be extracted directly from borehole logs (in 
1-D) [Holliger et al., 1996; Holliger, 1996; Wu et al., 1994] or indirectly from geological maps (in 2-D) 
[Holliger and Levander, 1994; Holliger and Levander, 1992]. 

The goal of our project was to estimate specific parameters from borehole logs by analyzing their 
stochastic characteristics, and to use these to develop a detailed 3-D petrophysical background 
model that honours both the boreholes and existing geological constraints. The model will be used 
to generate simulations of seismic surveys in three dimensions, in order to assess the response of 
the target of interest embedded within a heterogeneous environment. 

The autocovariance method 
The autocovariance of a log series is a measure of geologic structure, how different each value is 
from its neighbouring values. To describe the lithology-invariant component of physical property 
distributions, it is assumed that the log data (p) can be represented as a large scale deterministic 
component (p0) and small scale stochastic component (∆p): 

p(x,y,z) = p0(x,y,z) + ∆p(x,y,z)     (1) 

The deterministic trend is usually approximated as a low-order polynomial best-fit through the time 
series [Bendat and Piersol, 1986] (Figure 2). The parameters describing heterogeneity are derived 
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from ∆p. The statistical approach described by Goff and Jordan (1988) approximates the 
autocovariance of the stochastic fluctuations of physical properties by a von Karman function: 
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where ax, ay and az are the characteristic scales of the medium along each of the 3 dimensions, ν is 
the Hurst number (0 < ν < 1), σ2 is the variance of the property variations and K is the modified 
Bessel function of the second kind of order ν. Initial estimates of the Hurst number can be obtained 
from the slope of the power spectrum of the data. By fitting the calculated autocovariance of each 
log to a curve described by Eq. 2 (in its 1D form), we obtain estimates of the vertical scale 
parameter az describing the variation of physical properties around each borehole (Figure 3). 

 
Figure 2. Sonic velocity log from the Sudbury area, Ontario. Red line is a linear deterministic trend. 

 

 
Figure 3.  Calculated autocovariance for the log shown in Figure 2 (blue dots) and best-fitting von Karman 
function (red line). Parameters are ν=0.011 and az=47.5 m. 
 
Estimation of the two horizontal scale parameters can be done using the cross-correlation of logs 
from different locations [see for example Wu et al., 1994]. 
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Synthetic models 
Synthetic models can be generated by multiplying the square root of the power spectrum of the 
autocovariance (Eq. 2) (calculated with the parameters estimated from the logs) by eiφ, where φ is 
uniformly distributed on the interval [0, 2π]. Any deterministic trend can then be added. Media can 
be modeled in one, two or three dimensions, with either isotropic or anisotropic scale parameters. 
The scale lengths have a direct effect on the distribution of heterogeneity (Figure 4), which in turn 
can be related to the amount of scattering a seismic wave undergoes as it propagates through the 
medium. 

 
Figure 4. Synthetic velocity models with ν=0.25 and a) ax=az=10m, b) ax=az=100m and c) ax=100m, az=10m. 
 
Scattering regimes can be quantified through the size of inhomogeneities compared to the 
wavelength of seismic waves [Wu, 1989]: a quasi-homogeneous medium such as the one in Figure 
4a will transmit energy with little scattering, while the media represented by Figures 4b and c may 
produce large amounts of scattering in either forward or backward directions. In addition, scattering 
attenuation and mode conversions may be of importance in all three of these media. Seismic 
surveys will pick up coherent reflections if the size and shape of heterogeneities meet the right 
conditions of amplitude and directivity of the scattered wavefield. 
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3D viscoelastic finite difference modeling [Bohlen, 2002] demonstrates that as a seismic wave 
travels through a heterogeneous medium, a certain amount of energy is dissipated as scattered P 
and S waves (Figure 5). This will contribute to a reduction in signal to noise ratio as well as 
obscuring the signal from exploration targets depending on the strength of scatter. Modeling of any 
exploration target should therefore not only include large scale lithological trends and impedance 
contrasts, but the inherent heterogeneous nature of the lithology as well.  

 
Figure 5. P and S waves propagating through a heterogeneous background (ax=500m, az=50m). As the wave 
travels, energy is scattered in the form of both P and S waves, which reduces the S/N of the seismic data and 
does not in this case produce coherent reflections in seismograms. 

Conclusion 
The degree of heterogeneity of a medium can be assessed with petrophysical log data by fitting the 
stochastic fluctuations to a function governed by scale parameters. These scales define the extent 
to which the medium is continuous: small scales imply small heterogeneities that will have a limited 
effect on seismic wave propagation. When the size of inhomogeneities becomes comparable to the 
wavelength of seismic energy, strong scattering that is either coherent (reflections) or incoherent will 
occur. The effect of heterogeneity on seismic data can be quite obvious, as is seen by the 
transparent zones in seismic sections over the brecciated sequences of impact structures around 
the world. 

The autocovariance method for quantifying the stochastic fluctuations of physical properties allows 
us to assess the degree of heterogeneity of a medium and thus generate synthetic data in one, two 
or three dimensions to model the full viscoelastic seismic response of any exploration target within a 
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realistic medium. It also provides the means of completing geological databases with a full 
description of the distributions of physical properties, taking advantage of entire log datasets. The 
synthetic data can be used to supplement a sparse dataset during inversions or while 
interpolating/kriging between available control information. 
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