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Abstract 
Summary 
Seismic processing techniques, such as migration, have strict requirements on information 
content in the input seismic data. Although not a substitute for well-sampled field data, 
interpolation can provide useful data preconditioning that allows migration to work better. 

Seismic data interpolation has been around for long time, but only recently have we been able to 
use complex multidimensional and global algorithms that have the capability to infill large gaps in 
wide azimuth 3D land surveys. This innovation offers great potential for improvement, but the 
success of this technology strongly depends on three decisions: 1) the best domains to 
interpolate, 2) the optimal size of operators and 3) whether the original data should be regularized 
or kept untouched. The best domains to interpolate are those where the data look simple enough 
that a simple model can be used to predict unavailable information. The optimal size of operators 
depends on the structural complexity for every case and the initial sampling. Using operators that 
are too large can smear the data but operators that are too small cannot extract enough 
information to infill big gaps. Regularizing the data can produce an ideal geometry for migration, 
but this implies discarding all the original measurements and replacing them with predictions. 
Staying close to the input geometry in order to minimize distortions is a more conservative 
approach that can still help migration algorithms. Obviously this decision depends on our 
confidence in the model that the interpolator uses.  

Additional considerations when sampling in multiple dimensions affect our traditional aliasing 
constraints, because in multidimensions there is less overlapping between signal and aliases of 
the signal, opening new directions for research.  

In this paper, we address all these issues and show some examples of wide azimuth land data 
interpolation. 

Introduction 
All currently used 3D geometries have poor sampling along one or more dimensions. Migration 
suffers from artifacts when applied to poorly sampled data, because migration algorithms are 
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based on the principle of constructive and destructive interference. Amplitude variations along 
offset and azimuth (AVO, AVAz) are affected in the presence of gaps.   

There are many different approaches to attack this problem. The only perfect solution is to acquire 
well-sampled data; all the other approaches attack the symptoms of the problem rather than the 
problem itself, and there is no guarantee that they can really solve it. However, given that in the 
real world we cannot go back to the field and fix the actual problem, we need to address this issue 
using all the processing tools at our disposal.  

It is important to realize that most seismic algorithms implicitly apply some sort of interpolation 
because they assume correctly sampled data. Usually, missing samples are assumed to be zero 
or similar to neighboring values. The advantage of using a separate interpolation algorithm is that 
more intelligent assumptions can be made through the use of a priori information. For example, 
sinc interpolation uses the very reasonable constraint that frequencies beyond Nyquist are zero. 
Interpolation algorithms can then be viewed as methods to precondition the data with intelligent 
constraints. 

Interpolation of wide-azimuth land data presents many challenges, some of them quite different 
from those of interpolating narrow-azimuth marine data sets. The most familiar interpolation 
algorithms have been developed for marine streamer surveys. Marine data are usually well 
sampled in the inline direction and coarsely sampled in the crossline direction. Many algorithms 
have been quite successful in infilling the crossline direction, even in the presence of aliasing and 
complex structure (Xu et al., 2005, Hung et al., 2004, Zwartjes, and Hindriks, 2001). Land data 
interpolation, however, brings additional complications because of noise, topography and its wide-
azimuth nature. In particular, the azimuth distribution forces us to use information from several 
dimensions at the same time.  

Multidimensional interpolation algorithms are becoming feasible, even for five dimensions (Liu et 
al., 2004). This new capability raises new possibilities but also new questions. The general 
principle is still the same: missing data can be assumed to be similar to recorded data in its 
neighborhood, but the term “neighborhood” can have different meanings in multi-dimensions. 
Furthermore, a multi-dimensional operator has efficiency issues. Finally, data are always very 
irregular and sparse when analyzed in multidimensions. 

So interpolation has two different aspects: the general interpolation strategy (where to put the new 
traces, operator size, grouping of data), and the mathematical engine that uses some kind of 
model to predict the new traces. A discussion of these two aspects follows.  

Different Interpolation Strategies 
Different interpolation methods differ in complexity and assumptions and, most importantly, in 
operator size. Local methods (e.g., triangulation, nearest neighbour, etc.) tend to be robust, fast, 
adaptable and easy to implement. They use a simple model to represent the data in small 
windows. Their shortcoming is an inability to interpolate very large gaps, because they need 
nonexistent local information (there are no data around the trace to interpolate). Global methods 
are slower, less adaptable and harder to implement, because they cannot assume simple models 
for the data at a large scale. However, they can, at least in a mathematical sense, interpolate 
large gaps by using information supplied from distant data.  
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Most practical methods fall between these two extremes, but the sparser the sampling, the larger 
the operator size needs to be. If the geology is complex, a large operator can smear the features 
and decrease resolution. Our approach to this problem is to work with medium to large operators, 
but in domains where the data look simple. Our best results have been obtained in the inline-
crossline-azimuth-offset-frequency domain with NMO-corrected data.  

A related distinction is the number of dimensions that the algorithm can handle simultaneously. 
Although 3D seismic data have four spatial dimensions, one-dimensional methods use data along 
one dimension only. If the method is cascaded through the different dimensions, the order of 
these operations becomes extremely important. Multidimensional methods can use information 
from a well-sampled dimension to infill a poorly sampled dimension. In our experience, the best 
practice has been the use of four dimensions simultaneously, only in particular cases using all the 
five dimensions.  

The issue of which dimensions to interpolate (where to put the new traces) is critical. To 
precondition the data properly for Kirchhoff migration, we desire full, uniform coverage of offsets 
and azimuths. Unfortunately, this can increase the size of the survey by an order of magnitude, 
making migration very expensive. Furthermore, full coverage surveys have geometries that can 
be very different from what we have acquired; going from the acquisition geometry to the full-
coverage geometry opens the door for data distortion.  

To avoid this risk, we normally adopt a different approach: to stay as close as possible to the 
original geometry (“keep it real”). In this case the problem is well constrained by the original data, 
and good quality control is possible. We do this by creating new shots and/or receivers while 
keeping the original traces unchanged. Often this means that we decrease shot and/or receiver 
spacing (reducing bin size), or decrease shot and/or receiver line spacing to improve the offset 
and azimuth coverage (fold). In all cases, we take care not to add too many artificial traces. A 
quality control parameter is essential for this, allowing us to discard some interpolated traces, 
reducing the impact of the artificial traces on the final result. Typically the quality parameter is the 
distance between the new and the original traces. 

A different strategy is to regularize the data; this is to move the traces to a regular grid. 
Antileakage Fourier Transform (Xu et. al, 2005) and the pyramid transform (Hung et. al, 2004) are 
two successful data regularization techniques. These techniques require more localized operators 
(three dimensions instead of four or five) because regularization is computationally more 
expensive than interpolation.  

The Interpolation Engine 
The second major component of the interpolation problem is the choice of mathematical algorithm 
to predict new information given a set of recorded traces. One method with the flexibility to adapt 
to our requirements for multidimensional global interpolation is Minimum Norm Weighted 
Interpolation (MWNI) (Liu and Sacchi, 2004). MWNI is a constrained inversion algorithm 
formulated as follows. The actual data, d, are the result of a picking matrix (sampling), T, acting on 
an unknown fully sampled data set, m. The unknown (interpolated) data are constrained to have 
the same multidimensional spectrum as the original data. Enforcing this constraint requires a 
multidimensional Fourier Transform Fnd. To solve for the unknown data, a cost function is defined 
and minimized using standard optimization techniques. The cost function J is defined as  
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W
mTmd λ+−= 2J   with a norm calculated as  mmm ndknd p FF 21 −−=  

 
Fnd is the multidimensional Fourier transform and nd is the dimension of the data with nd =2, 3 or 
4 for 2D data, common azimuth, or 3D data, respectively. pk is the spectrum of the unknown data, 
obtained by bootstrapping or iterations. In spite of being global, this method is very fast because it 
uses FFTs. Its main drawback is that the original data sampling has to be an integer multiple of 
the required final sampling along each dimension.  Although this implies binning the data along 
the chosen dimensions, the effect of this on the interpolation is not strong because the binning 
effect in small wavenumbers is negligible, with influence only on the inversion constraint. 

Example 
We show an example of the benefits of data interpolation for migration in Figure 1.  The land data 
set in this example was acquired over a structured area in Thailand using orthogonal shot and 
receiver lines. The objective of the interpolation was to obtain more information on steep dips by 
including moderate to high frequency energy that the migration antialias filter usually removes. For 
this purpose we decreased the shot spacing along lines to decrease the bin size and therefore to 
relax the antialias filter. First, a PSTM migration/stack was produced using the original acquired 
data, and then the stack was interpolated, as shown in figure 1a.  In figure 1b the data were 
interpolated before migration.  The prestack interpolation produced a data set for migration input 
that was better sampled than the uninterpolated data set, and this allowed the migration to 
operate with greater fidelity (in this case, less anti-aliasing) on the steep-dip events.  As expected, 
the prestack interpolation did not add information to the 3-D data set, but it did allow the migration 
to make better use of the information that was already there. Figure 2 shows the shot locations 
after interpolation. Red dots are the locations of the original shots and blue dots are the locations 
of the new shots. To fully cover the gaps a very large extrapolation is required (close to 1000 
meters) but we decided to extrapolate only to 300 meters from the borders of the gaps. In this 
case, beyond 300 meters the extrapolated traces lose credibility. 

Conclusions 
3D land geometries are usually under sampled along one or more dimensions. As seismic 
processing becomes more demanding in terms of analyzing prestack data in detail, interpolation 
has become a very useful tool to condition the data for migration, AVO and AVAz. There are 
several well-understood algorithms for predicting data, but the engine used to predict missing 
samples is only half of the problem. Given that 3D seismic data live in five dimensions, it is very 
important to decide the best domain in which to apply this engine and the optimal size for the 
interpolation operator.  

The perfect input data set for migration may contain full CMP coverage for all offset ranges and 
uniform azimuth distribution, but this is a far cry from typical current land data. This situation leads 
to conflicting goals for processing: either obtaining perfect data for, say, migration or preserving as 
much original data as possible. We need to resolve this conflict by understanding how much data 
should be created, where to put it, and how much we can trust it for subsequent processing. 
These decisions are related to considerations of aliasing, complexity of the structure in different 
domains, efficiency, ability to manage large gaps, and regularity of the sampling. We are just 
scratching the surface of this difficult problem.  
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New interpolation algorithms allow us to look at several dimensions at once; this is of great benefit 
when we process irregular data sets that typically have large gaps. Infilling shot and receiver lines 
or constant offset/azimuth planes are two approaches we have successfully applied to mitigate 
acquisition artifacts. Better understanding of these processes will certainly push forward today’s 
state of the art in seismic processing. 
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Figure 1.  PSTM images from a land 3-D data set in Thailand.  In (a) the interpolation was performed after 
stacking the migrated images; in (b) the interpolation was performed before the migration.  The improved 
imaging of the steep-dip event in the center of the section is evident in (b).  (Data courtesy of PTT Exploration 
and Production.) 

 

 

 

 

 

 

 

 

Figure 2.  Shot locations after interpolation. Red dots are original shots. Blue dots are new (interpolated) 
shots. The two large gaps are between 1000 to 1500 meters in diameter (before interpolation). The shot 
spacing was decreased from 100 to 50 meters reducing the bin size by a factor of 2 along the vertical 
direction.  The bins are now square as opposed to the original rectangular bins. 


