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Abstract 
With multicomponent signal analysis becoming more common in exploration geophysics, it is 
natural that we would like to develop new techniques for polarization analysis and polarization 
filtering. Most of the existing methods operate in the time domain only, or in the frequency domain 
only. This causes a problem if the seismic data contain multiple events that have different 
polarization properties. Time-domain methods often cannot deal with overlapping events that have 
different frequencies, and frequency-domain methods can be compromised if any particular 
frequency band contains events that occur at different times. Some more recent techniques, such 
as the windowed covariance matrix technique of Jurkevics [1], have attempted to address these 
problems, but most such methods have the disadvantage of noninvertibility which means that they 
cannot be used for filtering.  

The method described in this abstract tracks the time changes in the polarization properties of a 
signal through use of time-frequency representations (TFRs). The method is easiest to 
understand if we start by thinking of the whole seismogram in terms of the Fourier transforms of 
its orthogonal components [2]. The Fourier decomposition of the signal’s vertical component gives 
a superposition of time-dependent sinusoids, each having a unique frequency and behaving like a 
vertically-oriented, one-dimensional harmonic oscillator. When the radial and transverse 
components are similarly decomposed, each frequency then contains three orthogonal sinusoids, 
giving three-dimensional harmonic motion. The result is elliptical motion in 3-space at each 
frequency. Thus the total signal can be thought of as a superposition of ellipses, instead of a 
superposition of sinusoids. 

The result is that the traditional Fourier amplitude and phase spectra can be supplanted by new 
Fourier spectra of the elements of these ellipses: the semimajor and semiminor axes of each 
ellipse; the strike and dip of each ellipse plane; the pitch of each major axis; and the phase of the 
particle motion at each frequency. In practice, these spectra are also given explicit time 
dependence, through use of a translating window. This helps to avoid the disadvantages of 
working entirely in the time domain, or the frequency domain, by combining information from both 
domains to produce a TFR. The windowed Fourier transform is not the only TFR that can be used 
for this purpose; some other examples are wavelet transforms, and the Stockwell transform [3] 
which is the TFR used by us. The Stockwell transform is similar to a windowed Fourier transform, 
but has the advantage of a wavelet-like, scalable window that provides multiresolution analysis.  

The test data used here to give an example of the method is shown in Fig. 1. This is a segment of 
a three-component broadband seismogram of an M = 6.9 earthquake, recorded at a seismic 
station in Pembroke, Ontario. This segment was selected because it contains the Love and 
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Rayleigh phases, which have distinctive and very different polarization properties. Here, the 
different components of the trace give the radial (x), transverse (y), and vertical (z)  
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Figure 1. Earthquake seismogram Figure 2. TFR of radial component 
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Figure 3. TFR of transverse component Figure 4. TFR of vertical component 
components of the motion. The Stockwell amplitude spectra of the separate components appear 
in Figs. 2, 3 and 4. In Fig. 3, the first large amplitude event (marked A) is the Love wave arrival; in 
Figs. 2 and 4, the largest amplitudes (marked C on Fig. 2) are the Rayleigh wave arrival. (The 
lower amplitude events marked D and B on Figs. 2 and 3 have Love and Rayleigh properties 
respectively; these may represent higher-order phases, or, alternatively, crustal wave packets of 
relatively high frequency whose shallow penetration depths have delayed their arrival times.) Both 
the Love and Rayleigh waves show obvious dispersive effects, with the higher frequencies 
arriving later.  

Figs. 5 and 6 show the Stockwell semimajor axis and semiminor axis spectra of the whole 3-
component seismogram, obtained using the approach described above. In Fig. 6, the very low 
amplitude of the signature of the Love wave is a consequence of its nearly linear particle motion; 
the semiminor axis is nearly zero. The Rayleigh wave signature on Fig. 5 has about 1.5 times the 
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amplitude of the corresponding signature on Fig. 6, which indicates that the ratio of the major and 
minor axes of the Rayleigh ellipse is roughly 3:2. The Stockwell spectra of  
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Figure 5. TFR of semimajor axis Figure 6. TFR of semiminor axis 
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Figure 7. TFR of ellipse plane dip Figure 8. TFR of ellipse plane strike 
 
the other elliptical elements can be difficult to interpret visually because, unlike Figs. 2- 6, they do 
not give any information about what parts of the time-frequency plane make the most significant 
contributions to the total signal. To this end, in Figs. 7 and 8, the values at each pixel are plotted 
using one of two different shades of the same colour. The brighter shades are used when the 
combined amplitude of Figs. 5 and 6 is larger than 7 µm. This cutoff value is useful for outlining 
the main Love and Rayleigh signatures. The Stockwell dip spectrum is shown in Fig. 7. Note that 
the Rayleigh wave signature has a dip of  

~π /2, indicating a vertical ellipse plane as one would expect. On the Love wave signature, 
though, the dip is unstable. This happens because, for nearly-linear simple harmonic motion, even 
small noise contributions can lead to large changes in the dip of the ellipse plane (keep in mind 
that this is not the same as the plunge of the major axis).  
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The Stockwell strike spectrum of the Love wave, shown in Fig. 8, is more stable 

and has a value of roughly ± π /2 (the positive radial direction has a strike of 0 in this notation). 
This is not surprising since Love waves are transverse. The reason there are two possible values 
is that the “strike direction” is defined to be the azimuth that the particle has when it crosses the 
horizontal plane in the direction of increasing z. Thus, changing the strike by ± π is equivalent to 
reversing the direction of particle motion from counterclockwise to clockwise, here a result of  
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Figure 9. Filtered seismogram Figure 10. Masking function 

 
noise contamination. (The need to specify the direction of motion also explains why some dip 
values are greater than π /2.) On the Rayleigh wave signature, the strike has a relatively stable 
value near 0, which tells us that the particle is displaced in the positive radial direction when it 
rises through the horizontal plane. This is consistent with the retrograde motion of the Rayleigh 
wave.  

Like the Fourier transform, the Stockwell transform is invertible, and so these TFRs can be used 
to design signal-adaptive polarization filters to target parts of the signal that have specific 
polarization properties. Filters of this type are not restricted to reducing the whole amplitude of any 
particular ellipse, as would be the case for standard Fourier-domain filtering. Fig. 9 shows the data 
of Fig. 1 after the application of a filter that attacks the 3:2 Rayleigh wave, by reducing the 
semimajor axis by 3/2 times the semiminor axis, then setting the semiminor axis to zero. The filter 
is only active in the parts of the time-frequency plane for which the dip, strike and ellipticity are all 
consistent with Rayleigh-type behaviour (the masking functions are shown in Fig. 10). This 
flexibility in filter design is a major strength of the technique. 
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