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Summary 
Monochromatic and band-limited spherical waves have differing reflection coefficient curves. To 
facilitate comparison, a new expression for monochromatic reflectivity is given in terms of a 
weighting function. The weighting function approach, developed previously for a specific class of 
band-limited spherical waves (Rayleigh filtered waves), shows explicitly how different plane waves 
contribute to a spherical-wave reflection coefficient. Direct comparison shows that monochromatic 
waves have oscillatory, non-decaying weighting functions, and thus sample a wide range of plane 
waves. In contrast, typical Rayleigh wavelets produce localized weighting functions. These two 
behaviors lead to reflection coefficient curves which differ beyond the critical angle. A bridge 
between these two behaviors is constructed by considering unusually narrow Rayleigh wavelets. 
These show intermediate properties. This study shows 1) a simple and convenient method for 
calculating monochromatic spherical-wave reflection coefficients, and 2) a clearer understanding 
of how spherical-wave reflection coefficients are created from constituent plane-waves. 

Introduction 
Historically, the most common approach for describing reflectivity of spherical waves in seismic 
exploration has been through constructing the reflection coefficients for a monochromatic source.  
This approach is due to Lamb (1904) and Sommerfeld (1909) and is described in Aki and 
Richards (1980).  Carrying out such calculations for multiple frequencies allows one to obtain the 
reflection coefficient for a band-limited wavelet via an inverse Fourier transform, as has been 
carried out by Haase (2004).   
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We have previously presented a direct approach to band-limited reflection coefficients (Ursenbach 
et al., 2005).  This employs the Rayleigh wavelet (Hubral and Tygel, 1989), which allows the 
inverse Fourier transform to be carried out analytically.  Only one numerical integral is then 
required to obtain the reflection coefficient for a given geometry.  The final result is expressed as 

 spherical (Rayleigh)
PP 0 PP( ) ( , , ) ( ) (cos )i n iR W S R dθ θ θ θ θ

Γ
= ∫ , (1) 

where iθ is the angle of incidence, θ  is an integration parameter, Γ  is an integration path in the 
complex plane, ( )0 1 0S Dα ω≡ , 1α  is the P-wave velocity of the overburden, D is the length of the 
raypath from source to receiver, 0ω  is the dominant frequency of the Rayleigh wavelet, and Wn is 
a normalized weighting function, with n a parameter of the Rayleigh wavelet.  For Rayleigh 
wavelets, Wn is an analytic function which can be readily programmed. 

In addition to providing a speedy approach to calculating spherical-wave reflection coefficients, 
the Rayleigh wavelet approach of equation 1 also provides useful insight into the relationship 
between plane-wave and spherical-wave reflectivities.  The Wn kernel is largest when θ  and 
iθ are similar, and decays rapidly when |θ − iθ | is large.  Thus the spherical-wave reflection 

coefficient receives contributions primarily from plane-wave coefficients near the angle of 
incidence.  Indeed, as S0 → 0, the spherical-wave coefficient approaches the plane-wave 
Zoeppritz result (Ursenbach et al., 2005). 

To obtain a similar picture for single frequencies, we first derive an expression for the 
monochromatic spherical-wave reflection coefficient which is similar in form to equation 1.  We 
then compare monochromatic reflection coefficients to band-limited reflection coefficients, and 
monochromatic weighting functions to band-limited weighting functions.  We will demonstrate that 
the two cases differ significantly, but that the band-limited results approach the monochromatic 
results for increasingly narrow bands. 

Theory 
Analogous to equation 6.30 of Aki and Richards (1980), the monochromatic potential for a 
reflected spherical wave may be written as 

 PP 00
( ) exp( ) ( ) ( ) exp[ ( )]pAi i t R p J pr i z h dpφ ω ω ω ω ωξ

ξ
∞

= − +∫  (2) 

where ( )φ ω  is the spectrum of the displacement potential, � is frequency, A is an arbitrary scale 

factor, t is time, p and � are horizontal and vertical slownesses ( 2 2
1 1/ pα ξ= + ), RPP is the 

plane-wave reflection coefficient, J0 is a zeroth-order Bessel function, r is the source-receiver 
offset, and z and h are the vertical distances from the interface to the receiver and source. 

To proceed from equation 2 to an expression for the spherical-wave reflection coefficient, we 
follow steps similar to those described in detail in Ursenbach et al. (2005) for the Rayleigh wavelet 
band-limited case: (1) Obtain the displacement spectrum from the gradient of the potential parallel 
to the ray vector at the receiver, (sin ,0,cos )i iθ θ , where iθ  is the angle of incidence.  (2) Divide this 
result by the simple displacement spectrum obtained using RPP = 1. (3) Perform a change of 
variables for the integration and define 1sin i pθ α=  and 1cos iθ ξα= .  (4) Set h = z, and note that 
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( / 2)cos iz D θ=  and sin ir D θ=  (where 2 24D r z= + ). (5) Note that the integrand now depends 
upon only three variables, θ , iθ , and S, where D, � and �1 appear only in the combination 

( )1S Dα ω≡ , a quantity which provides a measure of the importance of curvature and spherical 
effects.  The final result can then be written 

 spherical (monochromatic)
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We have thus derived an equation of the form of equation 1, and can compare reflection 
coefficients and weighting functions between monochromatic waves and band-limited waves. 

Results 
We consider a Class 1 AVO system defined in Table 1. We assume a frequency for the 
monochromatic wave of 100/π Hz (≈ 31.8 Hz), and an interface depth of 500 m, so S = .01cos iθ .  
Equations 3 and 4 may then be solved to give the monochromatic reflection coefficient curve, 
while, given an appropriate wavelet, a band-limited result may be obtained using the method of 
Ursenbach et al. (2005). Recent developments have improved this method so that calculations 
may be readily carried out for Rayleigh wavelets with large values of n, where the Rayleigh 
wavelet is given by 0( ) exp[ ( / )]nw f f n f f= −  and 0f  is the dominant frequency.  If 0f  is set equal 
to the frequency of the monochromatic wave, then choosing an appropriate set of n values should 
provide a bridge between monochromatic behavior and that of a typical seismic wavelet.  This is 
illustrated in Figure 1a, where the Rayleigh wavelet spectrum approaches a spike as n→∞ .  In 
Figure 1b we see a corresponding progression in the spherical-wave reflection coefficient curves.  
The monochromatic curve is highly oscillatory just past the critical angle while the band-limited 
solution approaches the plane-wave asymptote much more smoothly. 

Table 1. Two-layer, elastic interface model employed in calculations 
 Density (kg/m3) P-wave velocity (m/s) S-wave velocity (m/s)
Layer 1 2400 2000 879.88 
Layer 2 2000 2933.33 1882.29 
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To understand these differences we consider the weighting functions that give rise to the above 
reflection coefficients.  Figure 2 displays weighting functions for the three Rayleigh wavelets and 
the monochromatic wavelet for iθ = 40°.  The n = 15 and n = 50 wavelets do indeed form 
intermediates.  They decay away from θ  = iθ , as does the n = 5 wavelet, but their decay is slower 
and more oscillatory, approaching the behavior of the monochromatic weighting function. 

 

Figure 2. The weighting functions defined at iθ = 40° for the wavelets in Figure 1a. Note that the tails of the Rayleigh 
wavelet weighting functions [a)-c)] become increasingly oscillatory as n grows, thus approaching the appearance of 
the monochromatic wavelet weighting function in d). 
 

Thus framing calculations in terms of weighting functions, as in equations 1 and 3, provides 
insight into spherical-wave calculations for different types of wavelets. 

Figure 1. (a)  
The spectra of three Rayleigh 
wavelets. As n increases, the 
spectrum becomes spike-like, so 
that its reflectivity behavior 
should approach that of a 
monochromatic wave-let. 
 
Figure 1. (b)  
The spherical-wave reflection 
coefficient curves for the 
wavelets in (a), and the 
corresponding plane-wave curve 
and mono-chromatic spherical-
wave curves. 
 

a) d) c) b) 

a) b) 
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Summary and Comments 
Monochromatic spherical-wave reflection coefficient calculations have been re-expressed in terms 
of a weighting function.  This weighting function depends explicitly on only three variables: angle 
of incidence, an integration variable, and a sphericity parameter.  The latter subsumes frequency, 
overburden velocity and depth.  The weighting function is analytic and may be readily 
programmed in terms of these three variables.  A straightforward 1-D numerical integration then 
yields the normalized reflection coefficient. 

Calculations with the method have shown that weighting functions for monochromatic wavelets 
are non-decaying and highly oscillatory.  Comparing them to a series of weighting functions and 
reflection coefficient curves for increasingly narrow Rayleigh wavelets suggests that the less 
smooth the wavelet spectrum is, the more oscillatory the weighting function will be, and this will 
result in oscillations in the reflection coefficient curve as well. 
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