
 

 
 Let it Flow – 2007 CSPG CSEG Convention 378

WVD, Singular Value Decomposition Extended to  
Three Dimensional Space and Beyond 

Xishuo Wang* 
Geo-X Processing, Divestco Inc., Caglary, AB, Canada 

xishuo.wang@divestco.com 
 
 
 

Introduction 
A 2D data structure arranged as a matrix A of Nr rows by Nc columns has its Singular Value 
Decomposition (SVD): 

 ( )t
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A U V u vλ= Λ =∑ , (1) 

in which lλ  is the l th eigenvalue, ilu  is the I th element of l th eigenvector spanning the row 
direction of matrix A, and jlv  is the j th element of l th eigenvector spanning the column direction of 
matrix A. Columns of matrix  U/V are eigenvectors ul /vl .  

Wagon Value Decompostion (WVD) 
In this work I try to extend this expansion into dimensions of three and higher. For 3D data A, I try 
to find its Wagon value decomposition (WVD): 

 ijk l il jl kl
l

A u v wλ=∑ , (2) 

where lλ  is the l th wagonvalue and vectors ul, vl, & wl  are the l th wagonvectors spanning the 1st, 
2nd & 3rd dimensions, respectively. 

The choice of name, Wagon, is in admiration of the wagon as a basic carrier capable of carrying 
lots and any type of loads! 

In both (1) & (2), eigen/wagonvalues give a measure of the magnitude of the l th component, since 
for regularity, all eigen/wagonvectors always have L2 norm of unity.  

Expanding (2) into higher dimensions is straightforward: 

 ... ...ijk mn l il jl kl ml nl
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Note that eqns. (1) through (3) have the same form: data in N-dimensional space is the sum of a 
finite number of eigen/wagoncomponents, each component being an outer-product of N 1D 
eigen/wagonvectors spanning each and every one of the N dimensions, and scaled by respective 
eigen/wagonvalues.  

Solving Eigencomponents 
For the 2D case, many textbooks (e.g., Feng Kang et al, 1978) describe a simple way of finding 
the most dominant eigencomponent. It takes advantage of the fact that eigenvectors are mutually 
orthogonal. From an initial  guess of the eigenvector of the rows, u, Au gives rise to a first 
approximation of column eigenvector v. Atv gives an improved estimate for u, etc. After a few 
such trial operations, the solution for the first eigencomponent stablizes. Subtract the 1st 
eigencomponent from matrix A, go through the above procedure again, and we get the 2nd 
eigencomponent. After a few such subtractions, there is negligible energy remaining in matrix A. 

Solving Wagoncomponents 
Inspired by the above 2-D approach, I use a similar procedure to solve for wagoncomponents in N 
dimensions, with N greater than 2. Starting with an initial guess of the dominant (i.e., first) 
wagonvector in any one dimension, say the 1st dimension, I have uguess (unit L2 norm and refer 
to eqn.3), and then I form: 
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in which the summation upper limit n1 is the length of the data in dimension one. Notice that after 

such an operation the dimension count of the “data” (i.e. ...jk mnA ) drops by one. And in general, a J-
dimensional subset of the original N dimensional data will undergo a dimension reduction of one  
(i.e. J⇒ J-1) whenever I take the "multi-dimensional dot product" of the J-dimensional data with a 
1D vector spanning any one of the J dimensions. By chaining together N-2 of these multi-
dimensional dot products, each time employing an initial guess for the wagonvector associated 
with the dimension at hand, the dimension of the resulting data structure drops to two, namely 
Amn—a 2D matrix for which computation of the most dominant eigencomponent is readily 
accomplished via SVD (say, using the technique described in the last section). This chaining 
process is then done in reverse order (i.e., form the first dot product using the most recently 
estimated wagonvector, form the second dot product using the second most recently estimated 
wagonvector, etc.) to improve the wagonvector estimates. After a few such forward/reverse dot 
product chaining operations, solutions to wagonvectors (and wagonvalues) in all dimensions 
stabilize. Now we have the first wagoncomponent (i.e., the l=1 term in eqn.3). Subtract this 
component from A and repeat the above process to find the second wagoncomponent. This 
procedure is repeated until there is little energy left in A. 

Nature of WVD 
1) It is easy to prove that a finite number of wagoncomponents can losslessly reproduce 

data A. 

2) Wagonvectors do NOT form an orthogonal set (except N=2 case). 
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3) Data super-slices (for example, a time slice in stacked 3D volume; and in general a 
subset in ...jk mnA  obtained by fixing k=k0: 

0 ...jk mnA ) can be rearranged without altering the 
WVD (so long as elements of the relevant wagonvector are rearranged the same way). 

4) It works the same way in both real and complex number systems. 

Possible Applications of WVD  
1) Data compresion (e.g., Sacchi et al, 1998): for example, a 3D data volume of size N3,  

has N3 degrees of freedom, whereas L wagoncomponents are fully defined by only 
L∗(3N-2) degrees of freedom. 

2) Noise reduction (e.g., Sacchi et al, 1998): reconstruct data by dropping insignificant 
wagoncomponents. 

3) Edge detection (e.g., Gersztenkorn & Marfurt, 1996): similar to the SVD approach but our 
approach keeps the “stereo view” of the 3D data, as it avoids the compromise of 
rearranging 3D data into 2D. 

Dimensionality of Seismic Data 
For prestack data, I can think of up to eight dimensions: source x, source y, receiver x, receiver y, 
time, time-lapse, source type and receiver type. Four other “reluctant” dimensions are x & y of 
single source/sensor in source/receiver groups. For poststack data, the first four and the last  
“reluctant” four disappear and are replaced by CMP x & CMP y, but the time and time-lapse 
dimensions remain, giving a total of four dimensions (assuming we have just one source type & 
one receiver type). 

In the source type dimension, the wagonvector length could be 4; for example, explosive plus 3 
vibrator  types: up/down, east/west, north/south. 

In the receiver type dimension, the wagonvector length could also be 4; for example, pressure 
plus 3 components of particle velocity: vertical, radial & transverse. 

Now, that is complete time-lapse 3D land seismic data and our every day “conventional” data is a  
small subset of it! 

Three is much “larger” than Two 
SVD is quite different from WVD, mostly in the orthogonality (or not) of eigen (wagon) vectors. In 
other fields of science and/or mathematics, we are familiar with lots of such “harsh boundaries” 
from 2 to 3 (and beyond). One famous one is in geometry: using a compass and a straight edge a 
finite number of times to divide an arbitrary angle into 2/3 equal parts is easy/impossible. With this 
observation in mind I am not too embarrased at not being able to give a rigorous proof of the way I 
solve wagoncomponents. 
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Data Examples 
A synthetic example is shown below. The 3D data are modeled using eqn.3 with two known 
wagoncomponents. In all three figures, the coloured one is a time slice, the upper right  is an in-
line slice and lower right a x-line slice. Thin red lines mark the “slicing” positions.   

Fig.1m is the clean data, fig.1n is the same data with added noise, and fig.1w is synthesized after 
wagoncomponents are solved from noisy data of fig.1n. Cross correaltion between fig.1m and 
fig.1w is 98.3%. The performance of WVD is good: despite the high noise level, 
wagoncomponents are well resolved.  

I will also give application examples in noise reduction & edge detection on seismic data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  Figure 1m                                                      Fig ure 1n                                                      Figure 1w 
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