
 

 
 Let it Flow – 2007 CSPG CSEG Convention 509

High-Resolution Deconvolution with Sparsity and 
Lateral Continuity Constraints 

Juefu Wang* 
Alberta Ingenuity Fund and Divestco Inc., Calgary, AB, Canada 

Juefu.wang@divestco.com, 
 

Xishuo Wang and Mike Perz 
Divestco Inc., Calgary, AB, Canada 

 
 
 

In this paper we propose a stable high-resolution deconvolution algorithm that combines a priori 
information both within and across seismic traces. Specifically, we assume the reflectivity series is 
sparse in the time domain but continuous in the space domain. We encode such information in the 
form of sparse constraints within the trace and spatial smoothing constraints across the trace in 
the inverse problem. In particular, for the former we use the Cauchy norm to suppress noise, and 
for the latter we use adaptive FX filtering to enhance the coherence of seismic events across 
midpoints. The combination of adaptive FX filtering and sparse inversion provides  multi-channel 
solutions that are sparse in the vertical direction and coherent in the lateral direction. The 
robustness of this technique is validated by tests on both the synthetic wedge model and some 
real data.   

Introduction 
Deconvolution can be posed as an inverse problem in which we attempt to remove the signature 
of the wavelet and therefore increase the resolution. In practice we assume that a seismic trace 
can be modeled by convolving the reflectivity series with a wavelet and then adding some noise. 
Deconvolution problems can be classified into deterministic and statistical approaches, depending 
on whether the wavelet is known or unknown. In this paper, we assume that the wavelet is known 
and band-limited, having been obtained via wavelet extraction based on well log information or 
perhaps alternatively via the relaxation method (Canadas, 2002). In the context of land production 
processing, the proposed technique would typically be applied poststack (i.e., after surface-
consistent deconvolution and time-variant spectral whitening have been run in an effort to remove 
trace-by-trace wavelet fluctuations). Thus, our wavelet can be thought of as the embedded 
wavelet which exists after conventional wavelet processing. The goal of this paper is to 
reconstruct the sparse reflectivity series by collapsing this wavelet in the presence of noise. 

In recent years, inversion with sparse constraints has been applied to the high-resolution Radon 
transform (Sacchi and Ulrych, 1995), deconvolution (Oldenburg et al., 1983; Debeye and van Riel, 
1990) and least-squares migration (Wang and Sacchi, 2006). One challenge for sparse inversion 
is that the algorithm can be unstable in the presence of noise and imperfect forward modeling. A 
remedy to this problem is to impose spatial smoothness constraints in the inversion; however 
when the geological structure is not flat, simple smoothing will smear the solution. In this paper, 
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we present a new approach which combines adaptive FX filtering and sparseness constraints 
within the inversion process in order to better preserve and enhance subtle structures. 

Theory 
A common implementation of trace-by-trace sparse deconvolution (called “Cauchy trace-by-trace 
deconvolution” hereafter) solves the following cost function: 
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where W is the convolution matrix containing the known wavelet, r̂   is the reflectivity trace, ŝ  is 
the seismogram, λ  is a trade-off parameter which controls the strength of the constraints, and F  
is a function to force sparsity. Following Sacchi and Ulrych (1995), we take F to be the Cauchy 
norm: 
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where ir  is the ith element of the reflectivity model, and σ  is a scale parameter. The problem can 
be solved by iterative reweighted least-squares (IRLS) (Scales and Smith, 1994), and the solution 
at the jth iteration can be expressed in closed form: 
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where Q  is a diagonal matrix associated with the reflectivity model, and the superscripts j and j-1 
denote iteration numbers. The ith diagonal elements of Q  are  calculated by 
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To make the algorithm more stable, we propose a new multi-channel cost function that embodies 
the simultaneous constraints of vertical sparseness and lateral continuity: 
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where kr̂  is the kth reflectivity trace, kŝ  is the kth seismic trace, kF  is the kth regularization function, 

FXL  is the FX filtering operator (Canales, 1984), NTR  is the number of traces and R is the multi-
channel data ( )ˆ,...,ˆ,ˆ( 21 NTRrrrR = ). Since it is too expensive to minimize the proposed  cost function 
directly, we break it down into small problems: 

 NTRkzFsrWJ kkkkk ,1),ˆ(||ˆˆ|| 22 =+−= λ , (6) 

where kẑ is a FX filtered version of kr̂  (or the kth trace of RLFX ). Below is a practical processing 
flow for the algorithm: 

• Initialize the diagonal weighting matrices to identity matrices ( i.e., NTRkQii
k ,1  ,10)( == .) 

• Solve equation 3 for each seismic trace. 
• Apply FX filtering to the deconvolved traces (i.e. to the kr̂  in equation 6). 
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• Update the diagonal weighting matrices with the FX filtered traces (i.e. replace kr̂  in 
equation 4 with kẑ  in equation 6). 

 
We repeat the last three steps for 3-4 iterations to acquire a satisfactory solution. It is clear that 
we do not exactly solve the multi-channel deconvolution problem (equation 5). However by 
adaptive FX filtering, we gradually adjust the diagonal weighting and balance the energy among 
neighboring traces. The following tests with synthetic and real data show that the method is robust 
at suppressing noise and preserving structural information. 

Synthetic Example 
We evaluated the performance of the algorithm using a wedge model as input. We added 
significant noise to the data (S/N=2.0) (Figure 1a), then we compared the output of different 
processing flows. As shown in Figure 1b, the Cauchy trace-by-trace deconvolution efficiently 
removes the random noise. However, it also removes some coherent information. Another method 
(Figure 1c), FX filtering followed by trace-by-trace sparse deconvolution, preserves more signal 
but obviously still shows a degradation in lateral coherency. On the other hand, the proposed 
method provides a clean and coherent image (Figure 1d) 
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Figure 1. Wedge model data and deconvolution results by different methods. (a) Input data. (b) Cauchy trace-by-
trace deconvolution. (c) FX filtering followed by Cauchy trace-by-trace deconvolution. (d) Sparse deconvolution with 
adaptive FX filtering implementation 

Field data Example 
We applied the algorithm to some 3D field data. Figure 2 compares the input data (a brute stack 
of one inline) and the output data. The input data is quite noisy and  many events look 
discontinuous due to some suspicious vertical disturbance. It is clear that with sparsity and lateral 
continuity  regularization, our algorithm has dramatically increased the image quality. All events 
look coherent in the lateral direction, and the signature of the wavelet is efficiently suppressed.  
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Conclusions and Discussion 
We have proposed a robust sparse deconvolution algorithm by combining sparse regularization 
and FX filtering. Our synthetic and real data tests show that the method can preserve coherent 
information in various directions.   

Although the method is more stable than Cauchy trace-by-trace deconvolution, it is not 
guaranteed to work well in all circumstances. When the assumption of the sparse reflectivity 
model is violated, the algorithm will suppress some coherent signal. For instance the algorithm 
may have difficulty preserving weak events. Interpreters should be aware of this shortcoming in 
any sparse inversion algorithm. 
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Figure 2.  Field data example.  (a) Input data. (b) Result obtained with sparse deconvolution with adaptive FX filtering 
implementation. 
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