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Summary  

We propose a new noise-reduction method based on multi-channel deconvolution. We pose the 
noise reduction problem as an inverse problem and propose a cost function that  uses a priori 
information about the reflectivity model. In particular, we introduce a smoothing constraint across 
traces via FX-filtering. Once we have computed the reflectivity model, we predict the data by 
convolving them with an estimated wavelet. The two-step method yield clean data without 
destroying amplitude information. Subtle structural information such as residual moveout is also 
preserved since we adopt FX prediction filtering as a soft preconditioner. A test with gathers from the 
Marmousi data set shows that the method provides clean and well-focused AVO gathers.   

Introduction 

Noise-reduction is important in seismic data processing. Noise compromises our ability to depict the 
earth model. Noise can be classified into coherent noise and random noise according to its 
predictability. Coherent noise can be predicted using model-based approaches. For example, 
multiples after NMO exhibit parabolic moveout and therefore the parabolic Radon Transform can be 
used to model the multiples in the transform domain. The multiples are transformed back to the data 
space and finally, are subtracted from the original data (Hampson, 1996; Sacchi and Ulrych, 1995; 
Ng and Perz, 2004). While the latter is an example of a model-based coherent noise removal 
method, it is important to stress that this idea is also applicable to random noise attenuation with the 
important difference that the signal not the coherent noise is modelled. The difference between the 
data and the modelled signal is an estimate of the incoherent noise. An example of the latter 
framework are the well known algorithms for noise suppression in the frequency-space domain: FX 
filtering and FX projection filtering algorithms proposed by Canales (1984) and Soubaras (1994), 
respectively.  
It has been shown that regularized migration/inversion using a priori information of the model can 
yield high quality images of the subsurface (Wang et al., 2005). In this paper, we use a similar idea 
for noise reduction by solving a multi-channel deconvolution problem. Since seismic events are 
usually predictable within a gather, we use FX domain prediction filters to constrain the spatial 
behaviour of the reflectivity model.  The goals are two-fold: applying prediction filters helps to reduce 
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noise, and multi-channel deconvolution helps to honor the input data. The combined application of 
these two techniques is used to develop a framework for amplitude-preserving noise attenuation. 

Theory  

We start our analysis with the  following simple equation for random noise reduction: 

  eddobs += , (1) 

where  obsd  is the observed data, d  is the clean coherent data, and e  is the random noise. The 
denoising problem can be solved by minimizing the following cost function: 

  2||||)( dddJ obs −=  (2) 

which assumes noise with a Gaussian distribution. More straightforwardly, we try to minimize the 
difference between the predicted and observed data. In addition we represent the clean data as the 
convolution of wavelet with a reflectivity sequence: 
  Lmd = , (3) 

where L  is a convolution matrix which contains the wavelet, and m  is the reflectivity model. After 
combining equation (2) and (3), we obtain 

  2||||)( LmdmJ obs −= . (4) 

Once we found the optimal model ˆ m , we can predict the data by 
  dpred = L ˆ m . (5) 

Equation (4) can be further developed using preconditioning strategy. For example, an ideal CMP 
gather should be smooth along the offset axis. Using this a priori information we stabilize equation 
(4) by introducing a model-space constraint in preconditioned mode (Hanke and Hansen, 1993; 
Prucha and Biondi, 2002; Fomel and Claerbout, 2003) as below: 

  ,||||)( 2LPzdzJ obs −=  (6) 

where P  is a preconditioner and z  is an auxiliary variable. Equation (6) can be generalized to the 
multi-channel case as follows: 
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where kd denotes the k-th seismic trace in the time domain, Z  is the ensemble of reflectivity traces 
),...,,( 21 NTRzzzZ =  in the time domain, P  is a multi-channel preconditioning operator (prediction 

filter) which is applied to Z . The variable kPZ )( denotes the k-th cleaned reflectivity trace. The 
application of the operator P  involves the following operations: converting data to the FX domain 
via the Fourier transform, applying a spatial prediction filter and converting back to the TX domain 
via the inverse Fourier transform. We minimize the above cost function by the Conjugate Gradient 
(CG) algorithm (Hestenes and Steifel, 1952) and control the data fitting by the number of CG 
iterations. The prediction filters, which are required for the operator P , can be extracted from the 
adjoint solution for each channel (crosscorrelation of the estimated wavelet with the data): 

  ,,...,2,1,'~ NTRkdLm kk ==  (8) 
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where km~ denotes the k-th adjoint solution. We follow Canale's approach (1984) to compute 
prediction filters for a band of frequencies. The prediction  filters are saved or kept in memory since 
they will become part of our operator when minimizing equation (7).  
Equation (7) shows that in the modeling routine we should sequentially apply two operators P  and 
L , i.e. first we clean up the model by applying the prediction filter, and then we multiply the result 
with the convolution matrix L  which contains the wavelet. In the adjoint routine we apply the adjoint 
(transpose) of the convolution matrix first to the data, then we apply the adjoint of the prediction 
filtering. The adjoint of equation (7) can be expressed as 
  dLPz ''~ = , (9) 

where z~  denotes the output of the adjoint operator. The processing flow for our new denoising 
algorithm can be summarized as follows 

1. Estimate the seismic wavelet and compute the  convolution matrix L . 
2. Compute the adjoint solutions using equation (8) and use them to estimate  prediction filters. 
3. Minimize cost function (7) via the CG method. 
4. Predict the clean data using equation (5). 

Synthetic Example 

We tested the algorithm with a synthetic CMP gather from the  Marmousi data. We added significant 
noise to data to compare the performance of the conventional FX-filtering and the proposed 
method. Note that this is a local noise-reduction test and no nearby CMP information was used. 
Figure 1 shows that the new algorithm tends to provide more coherent and cleaner output than the 
conventional FX-filtering algorithm. In addition, subtle structural information and the AVO signature 
are  better preserved by the new method.  

Conclusions 

We have proposed a new multi-channel noise reduction algorithm using TX domain deconvolution 
and FX domain prediction filtering. The prediction filters are computed once and saved as a 
preconditioner for a multi-channel inverse problem. Synthetic examples were used to test the 
performance of the proposed method.  We have showed that the new method better preserves the 
AVO signature than standard FX filtering techniques. 
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Figure 1: Comparison of two noise-reduction methods using a synthetic dataset (Marmousi data with additive noise). 
(a) Input CMP gather. (b) Predicted data using Canales' method (1984) and the residuals. (c) Predicted data using 

the new method and the residuals. (d) Noise-free reference gather. 
 


