

Enhanced CO₂ Storage as a Result of CO₂-Water-Silicate Mineral Reactions; Evidence from Produced Fluid Geochemistry and Geochemical Modeling at the IEA Weyburn Project

Mark Raistrick* Senergy Ltd., Aberdeen, United Kingdom mark.raistrick@senergyltd.com

and

Ian Hutcheon, Maurice Shevalier and Bernhard Mayer University of Calgary, Calgary, AB, Canada

Summary

Geological CO₂ storage with or without the added benefit of CO₂ EOR provides a means of reducing CO₂ emissions to the atmosphere. To confirm the efficiency of storage and obtain credit for avoided CO₂ emissions a range of monitoring data needs to be collected and interpreted. Chemical data collected over four years of produced fluid monitoring at Weyburn suggest that alteration of K-feldspar has buffered the pH decrease resulting from CO₂ injection, enhancing aqueous CO₂ storage and possibly leading to mineral storage of CO₂ as CaCO₃. Using geochemical modeling software, reaction path simulations over 100s of years, calibrated via history matching over the first few years, show that reaction of K-feldspar and other silicate minerals present in the Weyburn oilfield reservoir will lead to further storage of injected CO₂ in the aqueous phase and as carbonate minerals.

Introduction

At the IEA Weyburn Project in Saskatchewan, CO_2 storage research takes place alongside CO_2 enhanced oil recovery (EOR) in the Weyburn reservoir (Wilson and Monea 2004). Chemical and isotopic measurements of fluids collected from monitored production wells at Weyburn confirm the integrity of CO_2 storage, trace CO_2 dissolution in the hydrocarbon and aqueous fluids and record CO_2 -water-rock reactions (e.g. Emberley et al. 2005, Raistrick et al. 2006). Not only do monitoring data confirm the occurrence of CO_2 storage, they also provide important information for reservoir management, demonstrating the effectiveness of CO_2 flooding and recording reservoir mineral stability.

Results and Discussion

The majority of the measured geochemical changes over a four year period following the arrival of CO₂ in the reservoir volume sampled by the selected monitoring wells are due to:

- 1. carbonate mineral dissolution
- 2. dissolution of injected CO₂ and dissociation to form HCO₃⁻

Changes in Ca^{2+} , Mg^{2+} and SO_4^{2-} concentrations constrain the quantity of HCO_3^- formed from carbonate mineral dissolution, which is caused by the pH decrease from dissolution and dissociation of injected CO_2 . An increase in K⁺ concentration suggests that the pH decrease led to silicate mineral alteration. The most likely silicate reaction is alteration of K-feldspar (1) to kaolinite, a reaction that buffers pH and leads to enhanced aqueous CO_2 storage as K⁺ - HCO_3^- brines, and if sufficient Ca^{2+} is available, the potential for mineral storage of CO_2 as Ca-carbonate.

$$3\text{KAISi}_{3}\text{O}_{8} \text{ (K-feldspar)+ } 3\text{H}_{2}\text{O} + 3\text{CO}_{2} \Rightarrow$$

$$\text{Al}_{4}\text{Si}_{4}\text{O}_{10}(\text{OH})_{8} \text{ (kaolinite) + 6SiO}_{2} \text{ (quartz)+ 2HCO}_{3}^{-} + 2\text{K}^{+}$$
(1)

The chemical data support the conclusions drawn from previous studies (e.g. Raistrick et al. 2006), confirming that the majority of the increase in HCO_3^- over the period since CO_2 entered the reservoir volume sampled by the selected monitoring wells resulted from dissolution and dissociation of injected CO_2 .

Geochemical reaction pathway modeling software GWB (Geochemists Workbench React) was used to simulate the measured changes in the selected monitoring well chemical data over 750 days following the arrival of injected CO_2 . This history matching confirms the type and magnitude of CO_2 -aqueous fluid-mineral reactions recorded in the chemical data (Figure 1). Using measured geochemical, physical, and geological data to define model conditions, the GWB-React simulations confirm that, following CO_2 injection, the dominant source of HCO_3^- is ionic trapping of injected CO_2 with carbonate mineral dissolution as a subordinate HCO_3^- source. The simulations also provide an estimation of the amount of injected CO_2 required to react with aqueous fluids and minerals to produce the measured chemical changes, and support the hypothesis that K-feldspar alteration is an effective pH buffer during CO_2 injection, promoting gradual mineral storage of CO_2 .

The modeling timescale was extended to investigate the fate of CO_2 over post injection timescales (i.e. 100s of years). These longer term simulations highlight the importance of pH buffering via a range of silicate mineral reactions, including K-feldspar, plagioclase and illite alteration, which lead to mineral storage of the added CO_2 . As a result of alteration of these silicate minerals, up to 50% of the HCO_3^- generated from CO_2 dissolution over the monitoring interval may be stored as calcite (CaCO₃) over timescales of a few 100 years.

Conclusions

Chemical data, with support from history matched reaction path simulations suggest that pH buffering via K-feldspar alteration has enhanced aqueous CO_2 storage (as HCO_3^{-}) and may have led to mineral storage of CO_2 as $CaCO_3$ over the monitoring period. The majority of the increase in the concentration of HCO_3^{-} that took place since CO_2 injection began resulted from dissolution and dissociation of injected CO_2 , with a minor contribution from carbonate mineral dissolution. Longer term reaction path simulations conducted to simulate 100s of years of CO_2 -aqueous fluid-mineral reactions, calibrated via history matching over the first few years, show that reaction of K-feldspar,

plagioclase and illite has the potential to lead to further storage of injected CO_2 in the aqueous phase and the precipitation of injected CO_2 as carbonate minerals.

Figure1: Well 1, 750 day simulation, comparison of simulation results with measured chemical data (dotted black lines and symbols are from measured chemical data). Simulation conditions: temperature 55°C, atmospheric pressure, 0.56g CO2 added over first 75 days.

Acknowledgements

Funding for the IEA GHG Weyburn CO₂ Monitoring and Storage Project is provided by the Petroleum Technology Research Centre. Technical assitance the staff of the Applied Geochemistry Group is also gratefully acknowledged.

References

Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Mayer, B., Günter, W.D. and Perkins, E.H. 2005. Monitoring of fluid-rock interaction and CO₂ storage through produced fluid sampling at the Weyburn CO₂-injection enhanced oil recovery site, Saskatchewan, Canada. Applied Geochemistry, 20, 1131-1157.

Raistrick, M., Mayer, B., Shevalier, M., Perez, R.J., Hutcheon, I., Perkins, E. and Gunter, B. 2006. Using chemical and isotopic data to quantify ionic trapping of injected carbon dioxide in oil field brines. Environmental Science and Technology, 40 (21), 6744-6479.

Wilson, M. and Monea, M. 2004. IEA GHG Weyburn CO₂ Monitoring and Storage Project Summary Report 2000-2004. Petroleum Technology Research Centre, Regina, Saskatchewan, Canada.