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Summary 

As a result of the numerical performance of finite-difference operators, reverse-time migration 
(RTM) images are typically low frequency.  We consider an alternative to wavefield propagation with 
finite differences, a high-fidelity time-stepping equation based on the Fourier transform, which is 
exact for homogeneous media if an aliasing condition is met.  The technique is adapted to variable 
velocity using a localized Fourier transform (Gabor transform).  The feasibility of using the time-
stepping equation for RTM is demonstrated by studying its stability properties, its impulse response, 
and by migrating a synthetic example of a salt dome.  We show that a high frequency wavefield can 
be time stepped with no loss of frequency content and with a much larger time step than is 
commonly used.  

Introduction 

Reverse-time migration (Baysal, 1983; McMechan, 1983) is a very powerful depth migration 
algorithm.  It is capable of imaging reflectors using overturned waves and multiples.  However, as a 
result of the sampling requirements, processing seismic surveys will either require harsh filtering to 
remove higher frequency data or they will require long run times even with a cluster of computers.  
The fine sampling requirements occur because finite-difference operators propagate high 
frequencies with an incorrect dispersion relation.  An example of the impressive performance, yet 
low frequency response, is the method is Jones et al. (2007). 
We propose an alternative time-stepping equation that does not use finite differences.  Our equation 
can time-step a wavefield using a coarser time step because the spatial derivatives in the wave 
equation are computed exactly in the Fourier domain and so do not suffer from dispersion at high 
frequencies.  As a result, the sampling requirements are better than propagating with finite 
differences.  The fundamental limitation on the time-step size in our method arises from a temporal 
aliasing condition, which we derive.  The accuracy and stability properties are demonstrated by 
comparing solutions of the time-stepping equation to finite-difference solutions.  We extend our 
method to variable velocity by replacing the global Fourier transform with a local Gabor transform 
using localizing windows within which a locally homogeneous solution is computed.   
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Theory  

The Fourier transform over the spatial dimensions converts the constant-velocity scalar wave 
equation to 
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where Û is the amplitude of the wavefield in the Fourier domain, ˆ
ttU is the second time derivative of 

the wavefield, x is the lateral coordinate, z is the depth coordinate, t  is the time coordinate, c  is the 
speed of propagation, zx kk ,  are the wavenumbers which correspond to the coordinates zx, , 
respectively. This equation, for the initial conditions ),,0( zxU  and (0, , )tU x z , has the solution  
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where ( ) 2 2,x z x zk k c k kω = +  and ( ),x zA k k , ( ),x zB k k  are determined by the 2D spatial Fourier 
transforms of ),,0( zxU , (0, , )tU x z .  However, knowledge of the time derivative of the field at each 
step is inconvenient so we determine from the field in the present, ),,0( zxU  and the field in the past 

( ), ,U t x zΔ− .  This may be done by writing an equation similar to equation (2) for the wavefield 

( )ˆ , ,x zU t k kΔ−  in terms of ( )0, ,U x z  and ( )0, ,tU x z .  Thus we may estimate the wavefield at time 

tt Δ= without the knowledge of the first derivative, ( )0, ,tU x z .  The resulting exact solution of the 
constant-velocity wave equation is 
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where x ki  is the scalar product of the 2D position and wavenumber vectors.  It is a simple exercise 
to show that for small ( ),x zk k tω Δ  the cosine in equation (3) can be replaced by its small angle 
approximation and eventually the usual finite-difference time stepping equation is obtained.  While 
our result is exact for constant velocity, with sampled data the size of the time step is limited by 
aliasing considerations.  When implemented numerically with the fast Fourier transform, equation 
(3) takes the wavefield at two distinct times with spatial sampling rate xΔ and generates a new 
wavefield at a future time.  The wavenumber which corresponds to the greatest frequency occurs 
when ( )/ , /k x xπ Δ π Δ= , the Nyquist wavenumbers. By the dispersion relation, the maximum 

wavenumber generates a frequency 2 /c xω π Δ= .  Since the wavefield is sampled in time at rate 
tΔ , the requirement that temporal frequencies not be aliased means that the Courant number r  

must satisfy the inequality / 1/ 2 ~ 0.707r tc xΔ Δ= < . Figure 1 (c)-(e) demonstrates the instability 
that results from this aliasing condition on the Courant number.  While it is probably more correct to 
call this effect aliasing, we here use the more standard term "instability".  This limitation on the step 
size is far less restrictive than that usually encountered in finite-difference time stepping. 
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Figure 1 (a) is the impulse response to a minimum phase wavelet using the second-order finite-
difference solution which contains unacceptable high-frequency noise arising from the dispersive 
propagation of the higher frequencies of the impulse.  In contrast, despite a much larger time step, 
Figure 1 (b) uses equation (3) recursively to calculate the impulse response without high frequency 
noise.   
In RTM it is necessary to propagate a wavefield in a variable velocity medium.  To demonstrate how 
equation (3) can be adapted to a variable velocity model, we consider a ( )v z  medium where the 
velocity only varies in the vertical direction. A similar construction where the windowing functions 
depends, additionally, on the x or lateral coordinate can be used for a general velocity model which 
has done in a similar context in Ma and Margrave (2007).  Using a smooth POU essentially 
smoothes the velocity model and therefore cannot account for multiple reflections. It is possible to 
account for reflections by considering windows with discontinuous boundaries. 
 

 
 

Figure 1: Cross Section through center of the circular wavefront of a propagating minimum phase wavelet. (a) Using 2nd order finite 
differences with  t 0.0001sΔ = . (b) Using equation (3) with t 0.001sΔ = . The finite-difference time-stepper took 10 times as 

long to execute. (c)-(e) Comparison of stability of the Courant number ,8.0,6.0=r  and 0.1 , instability is observed for the two 
larger Courant numbers. 
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anz = .  The constants Na ,,σ  are chosen so that the POU covers the interval ],0[ maxz  and to 

minimize propagation errors do to velocity variations. The POU is used to window the wavefield into 
regions at each time step and the combination of windowing and Fourier transformation converts 
equation (3) into  
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where ( ) 2 2
n n x z, v k kx yk kω = + , FT and -1FT are forward and inverse 2D Fourier transforms, nv  is 

the velocity used for propagation in the nth window, and we note that the windowed forward Fourier 
transform is essentially a Gabor transform. 

Examples 

Equation (4) is used recursively to calculate the response to a minimum phase wavelet for a linear 
velocity medium 10005.1)( += zzv . A partition of unity is displayed in Figure 2 with 9 windows.  The 
impulse is a circle whose center of radius moves down in depth with time.  The response to 5 
minimum phase impulses in Figure 2 has good continuity and shows amplitude gradients along the 
wavefront as expected from geometric spreading. 
A synthetic model of a salt dome is migrated by a poststack RTM.  For comparison, the model is 
also migrated by finite differencing the wave equation. A synthetic model of the salt dome was 
generated using standard finite difference modeling. The high constant velocity salt dome is on the 
right side of the velocity model. While on the left, the velocity model has a constant gradient.  Figure 
3 is a comparison of the migrations. Both methods produced an acceptable image of the salt dome 
although the finite-difference method required finer spatial sampling and finer time stepping.   
 

 
 

Figure 2:  (a) A partition of unity with 9 windows. From 2560m to 3000 meters there is a zero pad to avoid wraparound effects from 
the Fourier transform.  (b) The response to 5 minimum phase impulses in a medium with a constant velocity gradient.   

 

a) b) 
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Figure 3: Left: A poststack migration of a saltdome model using equation (4). Right: A second-order finite-difference poststack RTM 
of a saltdome model.  

 

Conclusions 

We proposed a Fourier domain time-stepping equation for RTM which is used to migrate a 
poststack image of a salt dome. Our method multiplies the spatial Fourier transform of the wavefield 
by a cosine whose argument depends on velocity and wavenumber. This can be interpreted as a 
spatial phase shift. For comparison, the salt dome was migrated by finite-difference time stepping 
the full wave equation. The two images were comparable in quality and the phase-shift time-
stepping equation was computed in a fraction of the time.   
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