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Summary 

There is an inherent continuity along reflectors of a seismic image. We use the recently introduced 
multiscale and multidirectional curvelet transform to exploit this continuity along reflectors for cases 
in which the assumption of spiky reflectivity may not hold. We show that such type of seismic 
reflectivity can be represented in the curvelet-domain by a vector whose entries decay rapidly. This 
curvelet-domain compression of reflectivity opens new perspectives towards solving classical 
problems in seismic processing including the deconvolution problem. In this paper, we present a 
formulation that seeks curvelet-domain sparsity for non-spiky reflectivity and we compare our results 
with those of spiky deconvolution. 

Introduction 

In this paper, we address the deconvolution problem for which we assume to have a known source 
wavelet and an unknown reflectivity. The forward problem can be written as: 
  y = Am + n  , (1) 

where y is the observed data, A is the convolution operator (Toeplitz matrix), m is the reflectivity and 
n white zero-centered is Gaussian noise. Given A and y, we need to find m.  
Since the early 80’s , researchers have cast this problem as a l1-norm minimization (Oldenburg et 
al., 1981), where the reflectivity is assumed be made up of spikes. In recent work by Felix 
Herrmann, it was shown that the assumption of spiky reflectivity is too limited to describe seismic 
reflectivity (Herrmann and Bernabe, 2004). This means that in cases where the reflectivity is not 
spiky, spiky deconvolution will fail (Herrmann and Bernabe, 2004; Herrmann, 2005).  
In our approach, we exploit continuity along reflectors for non-spiky reflectivity. We show that the 
non-spiky reflectivity is sparse in the curvelet-domain and that this sparsity can be exploited while 
solving the deconvolution problem. We start with a brief introduction to curvelets, followed by 
presentation of our algorithm and application on synthetic data. 
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Curvelets 

Curvelets are amongst one of the latest members of the family of multi-scale and multi-directional 
transforms (Candes and Donoho, 1999; Candes and Donoho, 2002). They are tight frames with 
moderate redundancy. Different curvelets at different frequency are shown in Figure-1. A curvelet is 
strictly localized in frequency and pseudo-localized in space (has a rapid decay). In the physical 
domain, the curvelets are oscillatory in one direction and smooth in other. The construction of 
curvelets is such that any object with C2 singularities can be represented by very few curvelet 
coefficients (Candes and Donoho, 2002). The sparsity of curvelets for C2 singularities makes it an 
ideal choice for estimating the reflectivity. 

 
Figure 1: A few curvelets in both spatial (left) and frequency domain (right) (adapted from Herrmann and Hennenfent, 2007) 

 

Method 

The deconvolution problem can be cast as following constrained optimization problem:  

  
min

x
 x 1 subject to y - ACT x

2
≤ ε    

˜ m = CT ˜ x   ,                

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (2) 

where ˜ x  is the curvelet coefficient vector, ε  is proportional to the noise level, CT is the curvelet 
synthesis operator and ˜ m  is the estimated reflectivity. The above constrained optimization problem 
is solved by a series of  following unconstrained optimization problem (Hennenfent et al., 2005) : 

  ˜ x = argmin
x

1
2

y − ACTx
2

2
+ λ x 1 , (3) 

where λ  is the trade-off parameter. We solve a series of above optimization problem (3) starting 
with a high λ  and decreasing the value of λ  until y - ACTx

2
≈ε , which corresponds to the solution 

of our optimization problem. By solving (3) we try to find the sparsest set of curvelet coefficients 
which explains the data within the noise level (Hennenfent et al., 2005). The lowering of λ  is done in 
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a controlled way so that we reach the optimum λ  very fast using the SPG l1  algorithm (Van den 
Berg and Friedlander, 2008; Hennenfent, 2007). Details on the algorithm can be found in the SPG l1 
Technical report (Van den Berg and Friedlander, 2008).  

Results 

Jon Claerbout’s Sigmoid model is one and half times fractionally diffrentiated in the frequency 
domain to obtain a non-spiky reflectivity model. Notice that the reflectivity is no longer made up of 
spikes. The noisy data is obtained by convolving a Ricker wavelet with the synthetic reflectivity and 
random Gaussian noise was added. We then apply our algortihm to estimate the reflectivity, 
assuming we know the source wavelet. For comparison, we also do spiky deconvolution on the 
same data. Figure-2 shows data, original reflectivity and estimated reflectivity with curvelets and 
spiky deconvolution. Figure-3 shows zoom-in on a single trace for original and estimated reflectivity 
with curvelets and spiky deconvolution. In case of spiky deconvolution, the algorithm tries to find a 
series of spikes which explains the data but in this case the reflectivity is no longer made of spikes 
and thus spiky deconvolution fails. On the other hand, our curvelet-regularized deconvolution 
algorithm which exploits the continuity along reflectors yields better results. 

Conclusions 

In this paper, the two dimensional structure of reflectivity is exploited by curvelets. We showed how 
non-spiky reflectivity can be recovered by exploiting the continuity along the reflectors by promoting 
curvelet-domain sparsity. The assumption of spiky reflectivity is too limited may not be valid in all 
cases. Thus sparsity of such a type of reflectivity in the curvelet-domain is a strong prior which we 
can use as part of our deconvolution algorithm. 
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Figure 2: Synthetic data and reflectivity estimates. (a) Original non-spiky reflectivity. (b) Noisy data 

(SNR~7db). (c) Estimated reflectivity with curvelets. (d) Estimated reflectivity with spiky deconvolution. 
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Figure 3: One trace plot of reflectivity. (a) Original reflectivity. (c) Estimated reflectivity with curvelets. (d) 

Estimated reflectivity with spiky deconvolution. 
 


