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Summary  

We will demonstrate an example of 2.5D modeling for an anisotropic medium, by using a second order 
accurate central finite-difference scheme throughout the variables of the staggered grid. We will show and 
example of HTI anisotropic medium modeling for reflected qP, qS1 and qS2 waves. The calculation time with 
2.5D modeling is considerably lower than in the case of a 3D modeling for the same medium. 

Introduction 

Migration procedures use finite-difference modeling of the wave elastic propagation in heterogeneous 
anisotropic media, to determine the spatial location of fracture, the shooting geometry design, the 
adjustment of interpretation algorithms and for many others cases. 

However, full-wave 3D modeling is computer-intensive in time and memory. Therefore, it is difficult to be 
implemented even by using modern computing means such as clusters (Furumura et al., 1998) 

A compromise solution could be the use of a medium model, where parameter values don’t change along 
some direction (2.5D). For this medium, the system of differential equations that describe its wave 
propagation can be splitted into groups of uncoupled and less complex 2D systems. The split is achieved by 
Fourier-transform along the invariant direction 2x . Each of the system is solved in a separate cluster node. 
2.5D-modeling, as opposed to 2D-modeling, is built by using a 3D system of differential equations, and 
therefore the three 3D wave-field components recorded on the surface are well calculated. 

The calculated wave-field contains all types of waves )and,( 21 SSqP  created by seismic wave scattering in 
the medium discontinuities. 

Song and William (1995) restrict the task of 2.5D acoustic modeling of a constant density medium to a 
linear equation system by Fourier-transform along variables time and 2x  with subsequent sampling. They 
solve the linear equation system by LU-decomposition of the matrix representing the Helmholtz operator. 
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Cao and Greenhalgh (1998) derive the condition of stability, by time continuation for the same medium 
model. They also derive the one-way equation that they use to suppress the reflection in the model 
boundaries. They showed that with the fixed frequency 0

2
≠Xk , the propagating waves have velocity 

dispersion, which should be accounted for when setting the calculation parameters. 

Novias and Santos (2005) presented a four order accurate finite-difference scheme along the spatial 
parameters and a second order accurate along the time for the same medium model and they also derived its 
condition of stability. 

Costa and Neto (2006) proposed a 2.5D method to create a wave-field for elastic isotropic and anisotropic 
media. However, they only used the formulated theory for isotropic and transversely isotropic media. 

In this work is presented a 2.5D finite-difference continuation scheme for a medium with arbitrary 
anisotropy. This scheme has a second order accuracy by all variables and is performed in rectangular grids 
in space and time. 

 

Method 

Let us define Tuuu ),,(u 321=  to be a displacement velocity vector, T),,,,,(τ 121323332211 ττττττ= a stress 
component vector, )(A mna=  a matrix with components of the medium stiffness tensor. Also, let us 
introduce the vector T),,,,,(ε 121323332211 εεεεεε= , where 
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After Fourier-transform along the variable 2x , the equations for the elastic wave propagation in an 
anisotropic medium can be presented as: 
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where f and M  are sources of force density and moments of force, respectively. 

All components of vectors u and τ  are located in three rectangular grids with mutual spacing 2/1Δx  and 
2/3Δx  in relation with their denominations:{ } 002332211 ,,, R⊂uτττ , { } 0,2/323 1

, xu Δ⊂ Rτ  and { } 2/0112 3
,, xu Δ⊂ Rτ . 

The values of the auxiliary variables ijε  are calculated in those grid places, where is necessary to obtain 

t
ij

∂

∂τ
. To accomplish this, linear interpolations are sometimes performed [ ])2/()2/(5,0)( pijpij

p
ij xx Δ++Δ−= xxx εεε , 

.)( qp
ij

pq
ij εε =  The finite-difference scheme is achieved by sampling the analytical relations (1) and it is 

central with regard to all variables. 

The sample interval selection is determined by the stability conditions of the finite-difference scheme and 
the acceptable dispersion in the frequency interval of the signal. For staggered grids, like those used in this 
work, the stability condition of the scheme is covered in article (Saeger and Bohlen, 2004). 

The wave-field related to the point ),,( 321 xxxM  is determined by the formula 
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Numerical examples 

When performing 2D full-wave modeling, the anisotropic medium must have a symmetry plane, and the 
survey line must lie within this plane. Therefore, there is not a way of modeling the wave propagation for a 
medium with a fracturing system that leads to an absence of the mentioned above symmetry plane. This 
limitation does not exist in 2.5D modeling. 

Let us have a model consisting of two HTI anisotropic layers with the following parameters: the upper layer 
anisotropic axis is located in the plane X1X3, and the lower one has an azimuth of  450. The source has a 
frequency of 40Hz and generates qP and qSV (S2) waves. Geophones are located every 10m. 

Upper layer parameters: qP- wave velocity along the symmetry axis of HTI-medium is Vp1=3000м/с, S1- 
wave velocity Vs1=2000м/с, density ρ1=2200м/с, Thomsen’s parameters ε1=0.1, δ1=0.15, ν1=0.2. 

Lower layer parameters: same designations but with index 2. Vp2=3500м/с, Vs2=2400м/с, ρ2=2300м/с, 
ε2=0.1, δ2= -0.1, ν2=0.2. 

The specifics of this model are that in the upper layer, the source only generates downward traveling qP and 
S2 waves. In this case a S1- wave is not generated, since the source does not generate oscillations in the 
horizontal plane in the upper HTI medium. At the boundary between two layers qP-S1, qP-S2 and S2-S1, S2-
qP converted waves are generated and they travel upward and downward from this boundary. Considering 
the direction of the upper layer axis of anisotropy, fast converted waves will be recorded at surface on the 
U2 component, and qP and S2 polarization waves will be recorded on the U1 and U3 components. At the 
same time, in the lower layer all type of waves have non-zero amplitudes on all three components, since the 
axis of anisotropy has an azimuth of 450. 

In Figure 1 are displays a multi-component seismogram recorded at the survey surface. By comparing the 
arrival times of the quasi-shear waves to the different components, we can see that the quasi-shear wave on 
component U2 propagates faster than the quasi-shear waves recorded on components U1 and U3. From this 
fugure it is seen that in the medium three types of waves qP, qSV(S2), and  SН(S1) are propagates. The 
arrival time of the converted wave PS1 is less than that of the converted wave PS2. 

As it is demonstrated in the supplied figure, the main difference between 2D modelling and 2,5-D modelling 
is the ability (in 2,5-D case) to obtain 3D seismograms where all the types of reflections are present.  

In the case illustrated by this article, we show how such modelling can be applied for the HTI media. 
However, the method in question allows modelling of more complex types of anisotropy (all the way to the 
triclinic anisotropy condition). Triclinic anisotropy condition is formed as a result of combination of the 
thin-layering and fracturing in an arbitrary TTI media. 

 

Conclusions 
We illustrated an example of 3D-3С modeling for 2.5D anisotropic medium. It was shown as well a way of 
modeling waves of all types of polarization for an HTI medium. 

The calculation was performed by using a second order accurate central finite-difference scheme for all 
variables on the staggered grid.  
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Figure 1.  X- , Y-, Z- components of a 3D-3C shot gather. 


