
 
 

 
  Frontiers + Innovation – 2009 CSPG CSEG CWLS Convention 17

Parallel Implementation of Pre-stack Least-squares Migration for Distributed Systems 
Sam T. Kaplan* 

SAIG, Department of Physics, University of Alberta, Edmonton, Alberta, Canada 
skaplan@ualberta.ca 

 

Summary 
Least-squares wave-equation pre-stack depth migration is a computationally expensive algorithm, requiring 
repeated application of wave-field modeling and migration algorithms.  We describe a parallel 
implementation of least-squares migration for distributed parallel computing systems using MPI.  The 
implementation distributes both the storage and processing requirements.  In storage, the migrated data is 
distributed across the memory spaces of the MPI processes using the depth dimension.  Likewise, the data 
(before migration) is distributed across the memory spaces of the MPI processes using the frequency 
dimension.  In processing, the computational work is shared across MPI processes by partitioning the 
frequency dimension.  We apply the algorithm to the Marmousi finite difference data-set, and find that the 
computation time of the algorithm scales with the number of MPI processes. 

Introduction 
In this paper we consider the parallel implementation of split-step wave-field modeling and its adjoint 
(migration), as well as least-squares migration.  The algorithmic complexity (expense) of these algorithms 
encourages their parallel implementation.  Within the context of least-squares migration, previous efforts 
have been made to parallelize migration operators (split-step and PSPI) using shared memory computers 
and OpenMP (e.g. Kuehl, 2002; Wang, 2005).  In this abstract we consider a parallel implementation for 
distributed computing systems using MPI.  The advantage being that distributed systems tend to be larger 
than shared memory systems in both their number of CPU's and their amount of memory.  The disadvantage 
being in the complexity of the resulting algorithm in needing to cope with a distributed (rather than shared) 
memory space.  Regardless, we thought it would be a useful exercise to write an MPI implementation of 
least-squares migration with split-step wave-equation operators. 
 
We begin with the equations of interest.  Then, we present our parallelization strategy and provide scaling 
results, showing the behavior of the implementation for up to, and including, thirty-two MPI processes.  Our 
tests are run on a Linux Opteron cluster with InfiniBand interconnect, and hosted by the Western Canada 
Research Grid (www.westgrid.ca).  

Operators 

Pre-stack least squares migration requires a data modeling (forward) operator and its adjoint.  These are 
often referred to as, respectively, demigration and migration (e.g. Santos et al., 2000).  Here, we use DSR 
operators similar to Popovici (1996), with the split-step approximation (Stoffa et al., 1990) to allow for 



 
  Frontiers + Innovation – 2009 CSPG CSEG CWLS Convention 18

lateral velocity variation.  Our derivation stems from the Born approximation, and is similar (but not the 
same) as Huang et al. (1999), and results in the forward operator, mapping migrated image gathers α  to 
data gathers sψ , 

   ψs =ψs(1) +ψs(2) +L+ψs(n ),   (1) 
where,  

  

ψs(k )(xg,zg x s,zs;ω) = f (ω)(F−1up(1)Fus(1))L(F−1up(k−1)Fus(k−1)) (F−1up(k )Fus(k ))
ω 2

c1(k )
2 α(xg ,x s, ′ z )d ′ z ,

zk−1

zk

∫   (2) 

and,  

 up(k )(kgx,k sx,ω) = −
ei(kgz ( k ) +ksz ( k ) )(zk −zk−1 )

16kgz(k )ksz(k )

   us(k )(xg ,x s,ω) = eiω c0( k )
−1 (x g )+c0( k )

−1 (x s )−2c1( k )
−1( ).   (3) 

In equations (1)-(3), the subscript (k)  denotes the k th  depth in the discrete velocity model, the source 
location is (x s,zs), and the receiver location is (xg ,zg ), ksz  and kgz  denote the vertical wave-number at 
source and receiver, respectively, and F  denotes the four-dimensional Fourier transform over xg  and x s.  
The operators up(k ) and us(k ) are, respectively, the phase-shift operator and split-step correction operator at 
the k th  depth.  Finally, f (ω) is the frequency distribution of the source, and c0  and c1 are the migration 
velocity model. The latter being, roughly, the lateral average of the former. 
More succinctly, we say that ψs = Lα , and write the adjoint, ′ α = LHψs.  For the sake of brevity we omit the 
details of the adjoint operator.  In the context of least-squares migration, we call ψs  data, and α  the model. 

Model and data space partioning for MPI processes 
The previous section reviewed the operators used in least-squares migration.  In our parallel implementation 
of these equations each MPI process evaluates the operators for some subset of frequencies, dividing the 
processing work amongst the MPI processes.  In addition, the storage of α  and ψs  is shared amongst the 
distinct memory spaces of the MPI processes.  In particular, α  is partitioned along its depth axis, and ψs  is 
partitioned along its frequency axis. This allows us to take advantage of the full storage capacity of a 
distributed system. 
 
We consider the case of nr MPI processes, nm  common midpoint gathers, nω  realizations of frequency, and 
nz realizations of depth.  Further, we define the sets,  as the set of frequency indexes on the k th  MPI 
process, and  as the set of depth indexes on the k th  MPI process.  In particular, we write for the k th  MPI 
process, 

  (4) 

and, 

   (5) 
The partitioning of depths (equation (4)) is straight-forward.  The partitioning of frequencies in equation (5) 
takes into account the evanescent portion of the wave-field to maintain a load-balanced algorithm.  In 
particular, we use a round-robin distribution for the frequencies.  To illustrate, we consider a simple 
example with nω =12, and nr = 3, and show the resulting distribution of frequencies in Table 1, where rk  
denotes the k th  MPI process. 
 



 
  Frontiers + Innovation – 2009 CSPG CSEG CWLS Convention 19

Forward operator for MPI processes 

  r1 r2 r3II  1 2 3 4 5 6 7 8 9 10 11 12 

r1  1   4   7   10   

r2   2   5   8   11  

r3    3   6   9   12 

Table 1: We show the distribution of 12 frequencies across 3 MPI processes and the round-robin strategy (equation (5)). 

The parallel organization of the forward and adjoint operators are similar.  Here, we consider some aspects of 
the forward operator.  We assume that α  is already stored in the memory spaces of the MPI processes 
according to  in equation (4).  An analysis of equations (1) and (2) show that all depths are required to 
compute ψs  for a single frequency.  Therefore, a strategy for computing the forward operator must include 
communication of α  between the memory spaces of the MPI processes.  Fortunately, a recursion evident in 
equations (1) and (2) makes this communication feasible.  We should emphasize that this recursion is not new 
to this abstract, but is the accepted method of computing the forward (demigration) operator (e.g., Kühl and 
Sacchi, 2003), regardless of whether the implementation is parallel or serial. 

 
We find the recursion by a re-organization of equations (1) and (2), giving,  

  

ψs(xg ,zg x s,zs;ω) = f (ω)u(1)
ω 2

c1(1)
2 α1 + u(2)

ω 2

c1(2)
2 α2 + u(3)

ω 2

c1(3)
2 α3 +L+ un

ω 2

c1(n )
2 αn

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ L

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
,   (6)

where α j = α xg,x s,z j( ) and,  

u( j ) = F−1up( j )Fus( j ).  (7)

This can be evaluated using the following recursion,  
ψs = g1  (8)

g j−1 = u( j−1)
ω 2

c1( j−1)
2 α j−1 + g j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,  (9)

where   j = n +1,n,K2, and gn +1 = 0.  Due to the recursion in equations (8) and (9), we use the following 
steps in our parallel implementation: (1) we communicate α  from the memory space of the k = nr MPI 
process to all memory spaces.  (2) For all , we compute the recursion in equations (8) and (9) for all 
frequencies ω  and lateral space xg ,x s( ).  In doing so, we remember that the memory space of the lth  MPI 
process stores frequencies in the set . (3) We repeat steps (1) and (2) for α  in the memory space of the 
k = nr − p MPI process for   p =1K(nr −1). 

Conjugate gradient algorithm for MPI processes 
We consider the use of the forward and adjoint operators in the normal equations of a least-squares system,  
 LHL + μI( )m = LHd,  (10)

where L and LH  were defined previously.  We call the vector m the model, made from realizations of α , 
and the vector d the data, made from realizations of ψs .  We solve equation (10) for m using a parallel 
implementation of conjugate gradients (e.g. Gupta et al., 1995).  The parallel implementation is fairly 



 
  Frontiers + Innovation – 2009 CSPG CSEG CWLS Convention 20

simple, only requiring communication across the memory spaces of the MPI processes for the evaluation of 
norms required by the conjugate gradient algorithm; namely, distances computed in the Hilbert and Krylov 
spaces. 

Results 
We present scaling results of the proposed algorithm, showing an almost ideal speed-up as a function of the 
number of MPI processes.  All tests were performed using the Marmousi data-set (e.g., Versteeg, 1994).  
The results are presented in Table 2.  The code was run on a Linux Opteron cluster with InfiniBand 
interconnect hosted by the Western Canada Research Grid (www.westgrid.ca).  If the algorithm scaled 
perfectly as a function of the number of MPI processes, then we would expect the number of MPI processes 
to match the Speed-up.  For lack of space, we do not show, here, the migrated and forward modeled 
Marmousi data.  Rather, choosing to show the scaling properties of the algorithm.  For results of Least-
squares migration applied to the Marmousi data (e.g. Versteeg, 1994), we refer the interested reader to, for 
example, Kuehl (2002). 
 

MPI Processes 
Forward operator Adjoint operator Least-squares inverse 

Run-time Speed-up Run-time Speed-up Run-time Speed-up 

1 59.6 1.0 71.6 1.0 154.6 1.0 

2 29.7 2.0 36.0 2.0 78.2 2.0 

4 15.3 3.9 18.6 3.8 40.1 3.9 

8 8.2 7.3 9.5 7.5 20.2 7.7 

16 4.1 14.7 4.6 14.8 11.3 13.6 

32 2.3 25.9 2.8 25.7 6.0 25.8 

Table 2: Run-time and speed-up values for evaluating the forward, adjoint and least-squares 
inverse (using the conjugate gradient method).  All run-times are given in minutes. 

Discussion 
We implement pre-stack split-step wave-field modeling and migration operators for parallel distributed 
computing systems.  In addition, we implemented a distributed parallel version of the conjugate gradient 
algorithm.  The primary purpose of this work is to accelerate our pace of research, reducing the turn-around 
time when running regularized migration tests.  The next step of this work will be a parallel implementation 
of the iterative re-weighted least-squares method, allowing for quick tests of regularized migration with 
non-linear model priors. 
 
References 
Gupta, A., Kumar, V., and Sameh, A., 1995, Performance and scalability of preconditioned conjugate gradient methods on parallel computers: 
IEEE Transactions on Parallel and Distributed Systems, 6, 455-469. 
Huang, L., Fehler, M., and Wu, R., 1999, Extended local Born Fourier migration method: Geophysics, 64, 1524-1534. 
Kuehl, H., 2002, Least-squares wave-equation migration/inversion: PhD Thesis, University of Alberta. 
Kühl, H., and Sacchi, M., 2003, Least-squares wave-equation migration for AVP/AVA inversion: Geophysics, 68, 262-273. 
Popovici, A., 1996, Prestack migration by split-step DSR: Geophysics, 61, 1412-1416. 
Santos, L., Schleicher, J., and Tygel, M., 2000, Modeling, migration, and demigration: The Leading Edge, 19, 712-715. 
Stoffa, P., Fokkema, J., de Luna Freire, R., and Kessinger, W, 1990, Split-step Fourier migration: Geophysics, 55, 410-421. 
Versteeg, R., 1994, The Marmousi experience: velocity model determination on a synthetic complex data set: The Leading Edge, 18, 86-91. 
Wang J., 2005, 3-D least-squares wave-equation AVP/AVA Migration of common azimuth data: PhD Thesis, University of Alberta. 


