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Summary 

Wave-equation migration, which uses more accurate wavefield extrapolation techniques than ray-based 

Kirchhoff migration, produces high-quality images beneath complex overburdens.  However, near-surface 

images resulting from wave equation methods are sometimes less satisfactory than those from Kirchhoff 

migration, even though more computing effort is required to obtain them.  Two filters are shown to be 

useful in improving the near surface image: a k-filter with an elliptical cutoff, and a subsurface p-filter.  In 

addition, it is useful to introduce a zero-slowness layer in connection with topography. 

Introduction 

The current standard for migration of Alberta Foothills data is the 3D Kirchhoff method adapted to tilted 

transverse isotropy (TTI).  The 3D coverage is necessary to image intricate subsurface structure, while TTI 

is necessary to obtain accurate kinematics. This generally yields a faithful description of the near surface, 

but there is interest in wavefield extrapolation methods that could be more reliable for structures buried 

below a complex overburden. 

Wave equation migration (WEM) holds promise for such a purpose, and has shown the ability to produce 

superior images at depth (Bale and Gray, 2008). However the near-surface results have often been less 

satisfactory than those of Kirchhoff, despite the greater computing resources required.  

We demonstrate that improvement of the near surface can be obtained through various filtering approaches, 

and that the concept of a ‘zero-slowness’ layer can be useful in migrating from topography. 

Theory 

The methods of TTI wave equation migration have been presented earlier (Bale et al. 2007a,b; Bale and 

Gray, 2008).  Here we present only a discussion of filtering and topography. 

K-filtering 

2D spatial FFTs are an important component of 3D phase-shift WEM.  However, spurious noise can be 

introduced along the x and y axis directions in various ways, such as when the inverse transform leads to a 

narrow, high-amplitude spike in real space, as shown in Figure 1.  Using a rectangular k-filter may mask 

this to some extent, but a better result is achieved if the filter has an elliptical cutoff.  Similar coherent noise 

can be present in migrated images.  It may appear for different reasons than here, but can be treated 

similarly. 
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Figure 1: (a) A Gaussian function in k-space, which still has noticeable amplitude at grid edges. (b) A product of cosine-tapered 

filters in x and y directions. (c) A radial cosine-tapered filter. (d) The inverse transform of truncated Gaussian. (e) The inverse 

transform of square-filtered Gaussian. (f) The inverse transform of radially-filtered Gaussian.  Parts (d)-(f) show the base-10 log 

of the absolute value of the real-space function, as a small imaginary component results from the finite size of the domain. 

Subsurface angle and slowness filtering 

This filtering is based on the relation  where  represent angle with respect to 

vertical, horizontal wavenumber, wavespeed, and frequency.  A migration operator generates image 

components at all angles and, with adequate sampling, these combine to yield image components 

descriptive of the subsurface.  When sampling is not ideal, it may be advantageous to remove some of the 

higher angle components which could persist as artefacts in the final image. This is accomplished in Fourier 

space by setting a cutoff value of  (angle filtering) or  (horizontal slowness filtering) and then 

removing wavenumber components of the data prohibited by this cutoff.   

Zero-slowness layer 

WEM methodology is readily applied when the surface can be treated as perfectly flat.  In Foothills surveys 

the topography is often too pronounced for this assumption, and it is not obvious how to proceed.  

Consequently a variety of solutions have been proposed.  The first method that was both accurate and 

efficient was applied to finite-difference methods and employed a zero-velocity layer (Beasley and Lynn, 

1989, 1992; Gray, 1997). Reshef (1991) presented a different method for use with phase-shift algorithms.  
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In his method a non-zero velocity is employed above topography, a zeroed receiver wavefield is initiated at 

the flat datum, and then observed data are added into this wavefield as it propagates past various receiver 

stations. A similar approach is to move all observed data to the flat datum and propagate downward, but at 

each step to replace the propagated wavefield with its original value for that (x,y) location, until it descends 

below the surface at that  location.   

All of these methods are valid as described. However, in these methods it is often assumed that every grid 

cell is entirely above or below topography. Ng (2007,2008) has observed that this assumption severely 

limits depth step size.  He proposes a novel solution in which a post-propagation static correction is used to 

approximately account for the fact that propagation occurs through only a portion of the cell. Alternatively 

we show that one can treat the straddling cells in the propagation step as well. This can be done by 

assigning an infinite wavespeed above the surface. If the depth step z is the sum of z1 and z2, 

representing the thicknesses of the regions above and below the surface, then the average slowness of the 

cell is (z2 /z)(1/v). Because no change is desired in the wavefield in the z1 interval (above topography), 

the ideal (isotropic) propagator for this depth step would be . By comparison, the 

propagator for the full depth step, using the average slowness, can be expressed as 

. The two expressions are identical for the kh = 0 component of the 

wavefield, so the correct static shift is obtained, while the errors in non-zero kh components typically have 

negligible effect over lateral distances greater than the trace spacing.  This permits the use of larger depth 

steps. 

Examples 

Here we present some examples of the above methods using the Copton Foothills 3D seismic survey (Bale 

and Gray, 2008). 

K-filtering 

Noise along the x and y axes can be quite apparent in 3D single migrated impulses.  In stacked images it is 

masked at depth, but is still visible at the surface (perhaps more so at irregular surfaces).  Figure 2 shows the 

effect on this noise of applying either a rectangular or elliptical k-filter.  The filters are applied at every 

depth on both source and receiver wavefields, and differences are obvious at the surface, but less noticeable 

further down. 

(a) (b)  (c)  

Figure 2: (a) Unfiltered image (40 Hz), extracted from Copton TTI WEM migration.  (b) Same as (a), but with rectangular filter applied.  (c) 

Same as (a), but with elliptical filter applied 

Subsurface slowness filtering 

Events in the image near the surface are vulnerable to corruption by high-angle arms of the migration 

operator, as seen in Figure 3a.  Applying a p-filter (Figure 3b) mutes these artefacts to show flat events 

more clearly.  Caution must be used though as high-angle events will also be weakened. 
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(a) 

 (b) 

 

 

Figure 3: (a) Near-surface portion of Copton migration image (70 Hz, 1000 m AGC) with only k-filtering applied (elliptical cutoff). (b) Same as 

(a) but also with p-filter cutoff of 0.000205 s/m. 

Zero-slowness layer 

The above calculations were carried out using a TTI adaptation of the zero-slowness layer described above. 

Conclusions 

Careful use of filtering can improve the quality of near-surface images for TTI WEM.  The zero-slowness 

concept permits the use of large depth steps even in datasets with extensive topography. 
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