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Summary 
We show a new novel technique of seismic resolution improvement using the Continuous 
Wavelet Transform (CWT) and harmonic principle. Using the CWT and the available bandwidth 
in the recorded seismic, the phase and amplitude spectra of harmonics and sub-harmonics can 
be computed. These harmonic and sub-harmonic frequencies are then convolved onto the input 
data. Subsequently only the frequencies existing in the reflectivity that is above the ambient 
noise level in the CWT domain is added to the seismic wavelet. This process broadens the 
signal bandwidth which increases the resolution of the seismic data and improves structural and 
stratigraphic interpretation especially for subtle geological features. 

Introduction 
The subsurface is neither fully elastic nor homogenous and as a result we have dissipation of 
high frequency energy (conversion to heat) and velocity dispersion. All of these effects give us a 
distorted and stretched wavelet (Wang, 2006). The end result is lower resolution of our seismic 
data that is poor for interpretation. 

The algorithm we introduce attempts to recover the lost wavelet characteristics by using the 
available bandwidth in the seismic data. The available bandwidth acts as the fundamental 
frequencies, for which harmonics will be computed from, and added back into the wavelet by a 
convolutional-like process in the CWT domain. This effectively reshapes the wavelet and 
broadens the spectrum. Any harmonic frequencies that do not match reflectivity above the 
ambient noise level in the CWT domain will not remain in the final result. 

This process is not limited to the high frequency end only. The same algorithm can be applied to 
the low end of the spectrum by computing sub-harmonics from the fundamental frequencies 
(available bandwidth). This can be important in areas where much of the lower frequency data 
has been suppressed due to ground roll and other low frequency noise trains. 

Theory 
The CWT is defined as the convolution of a time series f(t) with a scaled (s) and translated () 

wavelet (t).  

                                                      where (*) indicates the complex conjugate 

 

The wavelet must meet the admissibility condition if the analyzing wavelet is going to be used 
to reconstruct the original time series (Qian, 2002). The admissibility condition is given by: 
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The Admissibility Condition implies that   0     = 0 and   0



dtt . This tells us that (t) 

has a zero mean and is a wavelet. 
 

The scaled wavelets are called daughter wavelets as they are scaled from the mother wavelet 

. Because the implementation of the CWT is a discrete operator and not a truly continuous 
operator, a choice needs to be made as to how many daughter wavelets will be used, thus how 
much redundancy. A minimum of 10 scales per octave is sufficient to recreate the input time 
series from the transform by computing its reconstruction. 

The CWT, although highly redundant, provides a very detailed description of the signal in terms 
of time and frequency (Walker, 1999).  These properties are utilized to predict the harmonics 
and sub-harmonics used for bandwidth extension.  

We chose the Morlet wavelet as our mother wavelet which is a complex function representing a 
plane wave modulated by a Gaussian. The complex nature of the wavelet permits the 
calculation of amplitude and phase for each scale at distinct times. The Morlet wavelet is given 
by: 

                                       

where the real and imaginary parts are:   
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The Morlet wavelet is also optimal in that it closely follows the uncertainty principle as it is 
defined in time-series analysis. This helps to give us an optimal distribution of time vs. 
frequency balance (Teolis, 1998). The uncertainty principle places limits on our time-frequency 
analysis. These limits prevent us from knowing both the exact frequency and time 
simultaneously. 

To reconstruct the time series, a double integral is required since we went from a function in 

time f(t) to a function of time and scale W(,s). The reconstruction formula is given by: 
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ψ,    where Cis given by the Admissibility Condition. 

One other limitation should be noted in this process of bandwidth extension. Any such endeavor 
will be limited by the Sampling Theorem and can not recover reflectivity information higher than 
the Nyquist frequency. Furthermore, because of leakage from filters (side lobes), anti-aliasing 
filters often limit the maximum recoverable reflectivity to less than Nyquist. 

Synthetic Examples 
The first example is a classic wedge model with equal positive reflectivity for both the top and 
bottom reflectors. The top reflector is flat, and the bottom reflector has a dip of 0.3ms per trace. 
The frequency content of the low frequency wedge is 7-55 Hz. The bandwidth extended low 
frequency wedge reaches the same resolution as the high frequency wedge of 7-85 Hz judged 
by the same tuning thickness at trace #28. 
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Figure 1: Bandwidth extension applied to a 
wedge model. (a) Low-frequency synthetic 
input to bandwidth extension. (b) Input (top) 
after bandwidth extension. (c) High 
frequency synthetic to compare to 
bandwidth extended (middle).  Blue and 
green arrows indicate the limit of resolution 
of the top and bottom reflectors of the 
wedge respectively for the two bandwidths 
tested. 

 

Real Examples 
The next example is from an onshore 3D survey. The wells ties are shown along with the cross-
correlations for the well ties. The input data (Figure 2) has large side lobes indicated on the 
cross-correlation for the tie. This suggests that although the tie is good, the data probably has a 
“ringy” (repetitive) appearance.  

 

Figure 2: Input data (black), extracted                  Figure 3: Bandwidth extended data (black),             
wavelet and well calibration (blue)                        extracted wavelet and well calibration (blue).                                                                              

After bandwidth extension we see a much better cross-correlation with the peak/trough ratio 
much smaller for the side lobes. Figure 3, shows the bandwidth extended data and it can be 
seen that the data has a much better character than the input data in Figure 2.  

Our final example is from another onshore porosity play. The large amplitude reflector (peak) is 
a shale-limestone interface (Figure 4). The limestone when porosity is present and is on a high 
structurally is usually a good gas reservoir. On the low frequency data it is difficult to ascertain 
as to whether porosity is present in the limestone. However, the bandwidth extended data 
clearly shows that the presence of limestone porosity is related to the trough (Figure 5).  
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Figure 4: Input data, wavelet and well               Figure 5: Bandwidth extended data, wavelet 
calibration (red trace is the synthetics).             and well calibration.                                      

Conclusions 
Bandwidth extension has been demonstrated to be possible and fruitful for seismic resolution 
enhancement and interpretation.  There are limitations: the Sampling Theorem limits the 
maximum recoverable reflectivity to Nyquist and anti-aliasing filters will often set this limit below 
Nyquist.  

The 2-layer wedge model demonstrated that bandwidth extension can help resolve pinch outs 
and other similar stratigraphic features. The real data examples show that besides just 
enhancement of bandwidth we also get the benefit of reduced “ringy” character and can help 
reveal such stratigraphic or facies changes related to porosity changes. 

The Widess Model (Widess, 1975) suggested that there is seismic reflectivity available below 
the dominant frequency. This information can be extracted, resulting in an increase in resolution 
by adding harmonic frequencies back to the data. Once this is done many features such as 
minor faults, on-laps, pinch outs and other stratigraphic features come to light. All of these 
features can have a significant impact on interpretation of seismic data. 
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