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Summary 
A new phase-shift method for wavefield downward continuation is presented. Unlike conventional phase-

shift which is based on the one way scalar wave equation that is factorized from homogenous media, this 

method is derived by directly solving the full scalar wave equation and therefore backward propagation is 

used during the procedure of extrapolation. 

 

Introduction 
The Phase-shift method (Gazdag, 1978) for wavefield extrapolation has played a very important role in 

exploration seismic. This method was derived by solving the wave equation in homogeneous media and it 

has been applied to heterogeneous media with an approximation technique for interpolation such as 

phase-shift plus interpolation (Gazdag, 1984) or a local wave field approximation such as generalized 

phase-shift plus interpolation (Wenzel, 1991). It has been shown that this one-way phase-shift migration 

can yield the same travel times as the full wave equation but does not yield accurate amplitudes except in 

homogeneous media (Kosloff and Bysal, 1983). True amplitude phase-shift migration has received 

attention for many years. Kosloff and Bysal developed a generalized phase-shift migration and in this 

work the full wavefield that contains both the up and down-going waves is used for downward 

continuation. However, as shown in their paper (Kosloff and Bysal, 1983) directly applying the full 

wavefield to phase shift migration can produce artifacts because the part of the wavefield that propagates 

opposite to the direction of downward continuation is not treated correctly. Therefore this method works 

only in a weak scattering media system. (Pai, 1988) developed a generalized f-k migration based on 

Born’s approximation to handle inhomogeneous media. In this work the up going wave is eliminated 

when applied to the downward continuation. Because of Born’s approximation this method is also limited 

to a weak scattering media system. Based on the WKBJ approximation (Zhang, 1993) developed a 

coupled equation system for up and down-going wave and this work was applied recently to true 

amplitude migration (Zhang et. al, 2005). With the same idea as that of Kosloff and Bysal, (Sharma and 

Agrawal, 2003) developed a finite difference based method for wide angle beam propagation and (Zhang 

et al, 2009) extended it to a split step Fast Fourier transform method for 3D wave propagation. In this 

paper we start from the same equation system used by Kosloff and Bysal to derive an explicit up and 

down going wavefield, which leads to a new one-way true amplitude phase shift downward wavefield 

continuation. 
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Methods 
The scalar wave propagation problem is defined with the wave equation (2D case) 
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where ),( zx  is the wavefield, x and z represent spatial coordinates and  is temporal frequency. 

Equation (1) can be written as a first order ordinary equation system related to displacement and stress 

(Kosloff and Bysal 1983, 1987) as: 
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where 
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Equation (2) is in a matrix form and can be solved numerically (Kosloff and Kessler, 1987) to obtain 

wavefield propagating along the spatial z direction. The solution of equation (2) for laterally 

homogeneous media is very simple (Kosloff and Bysal, 1983) 
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where 
A  and

A , the amplitudes of up and down-going waves, can be determined by continuity 

conditions of both  and 
z


 at each layer boundary. Equations (2) or equation (3) are for full wave 

extrapolation systems and with this system one can propagate both the up and down-going wavefield 

simultaneously. When extrapolating the up-going wavefield the down-going reflected energy will be 

treated incorrectly. A possible solution to this is to separate the up and down-going wavefield at each step 

of the extrapolation process, store the down-going wavefield and then continue to propagate only the up- 

going wavefield. The stored down-going wavefield is then extrapolated in the reverse direction.  This full 

wavefield spatial extrapolation is equivalent to reverse time wavefield propagation and needs much more 

memory which results in added computational cost. 
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In order to obtain one way wavefield extrapolation, equation (2) needs to be factorized into two equations 

regarding to the spatial z variable, i.e. propagating directions. The factorization can be pursuit via Eigen 

decomposition of matrix H:       
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where V represents eigenvector and  is eigenvalue: 

 

                











iSiS
V

11

2

1
, 












iS

iS

0

0
 and 












Si

Si
V

/1

/1

2

11
   

 

by defining 
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and 
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R is the scattering matrix and the symmetry of the matrix leads to energy conservation. Unlike equation 

(2), equation (5) separates the wavefield into up and down-going wavefields, but the two wavefields are 

coupled by matrix R. When the media is homogeneous all the elements in the R matrix are zero and as a 

result the two wavefields are decoupled. 

 

Equation (5) can be rewritten as: 
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Until now no approximation has been made. However, the coupled terms still makes the practice difficult. 

By ignoring the coupled terms (i.e. ignore multi-scattering) we have:  
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It is of interest to get an insight on the reflection term in equation (10). If 
22 / x can be replaced by 

2

xk  via a Fourier Transform as in the case of a laterally homogeneous media term then: 
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and it is equivalent to the WKBJ approximation result (Zhang, 2005). Furthermore, in a layered media 

between layer k and k+1 we have 
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which is the coefficient of reflection for an acoustic wave (Ceverny, 2001).  

 

Applications  
Extrapolators described in equation (9) can be directly solved using finite difference and can be simplified 

for practical implementation. With the assumption that the vertical velocity does not change within each 

extrapolation step and the energy at each scattering point propagates within a limited angle, due to the 

oblique angle effect, the reflection only happens at the boundary. Then equation (9) can be written as: 
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Equation (13) can be implemented by solving the wave extrapolation within each step layer with simply a 

phase shift and the reflection term is only considered when moving to the next step. This implementation 

is similar to Pai’s migration approach (Pai D., 1988) and turns out to be very efficient. For general lateral 

inhomogeneous media equation (13) can be solved with any conventional method such as split-step for 

extrapolation. 

 

The interest point of equation (10) is the sign on the right hand. The physical explanation is that for the 

up-going (forward) wave extrapolation the reflection part of the energy will be removed and therefore 

only the remaining energy continues to propagate upwards and for the down-going (backward) 

propagation this lost energy will be compensated. 

 

 

Discussions 
A new formula for a one way equation extrapolation is presented. Comparing this formula with the 

conventional phase-shift method shows that they are very similar except for an extra term related to the 

reflection. The proposed practical implementation is similar to the amplitude treatment in ray theory. It 

should also be noted that the same reflection/transmission can be obtained by solving boundary problems 
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via equation (3) and by properly eliminating the up and down-going wavefield. One more interesting 

point is that the scattering matrix reflects acoustic wave AVO properties and if it is extended to elastic 

waves then the matrix can be used for conventional elastic AVO analysis. 
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