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Summary  
Most conventional approaches to migration by downward continuation use one-way wave 
equation which allows wavefield to propagate only downward or upward. However one-way 
wave equation migration (WEM), although reliable, may not give satisfactory images when the 
structures have steep dips and the velocity model is so complex that multiple reflections exist.  
This paper proposes a downward continuation approach with two-way wave equation which 
propagates downgoing wave and upgoing wave simultaneously. The mechanism is similar to 
phase shift plus interpolation (PSPI) with one-way wave equation except that in two-way PSPI 
signs of phase-shifts applied to downgoing wave and upgoing wave are different and the 
derivative of wavefield to depth needs to be calculated.  A synthetic example presented 
demonstrates that this two-way PSPI migration allows steep dip to be imaged. 

Introduction 
Seismic migration is usually conducted these days using either the Kirchhoff integral method or 
the conventional (one-way) wavefield extrapolation. Although effective for many seismic 
datasets, both methods have limitations in terms of imaging complex structures.  

The standard shot profile one-way WEM images the subsurface by continuing the source and 
receiver wavefields for each shot downward in the depth. The image is formed by applying an 
imaging condition to combine these two wavefields at subsurface locations to produce images 
at those locations. Summation of all shot-images forms the final image. The main limitation for 
this method is that one assumes source and receiver wavefields only travel in one direction, i.e. 
forward for the source wavefield and backward for the receiver wavefield. In practice, both 
wavefields travel up and down when the velocity model is complex. This generates turning rays 
and multiples. In addition, the one-way WEM usually limits dips to less than 85 degrees and 
thus the steep dip and turning rays are imaged through Kirchhoff techniques, which fail to 
handle multiple arrivals. As a result, the two-way WEM is needed.  

The two-way WEM is based on solving the two-way wave equation and it does not have the 
limitations listed above for the one-way WEM and the Kirchhoff migration.  The suggested 
method for the two-way WEM is the reverse-time migration, which solves two-way wave 
equation in time-space domain by finite difference approximation.  

This paper introduces an alternative approach, the downward continuation technique, to solve 
the two-way wave equation. In this approach, both downgoing and upgoing waves are 
downward continued simulteniously at each depth level and then imaging condition is applied. 
Unlike earlier two-way downward continuation techniques, (Kosloff and Baysal, 1983; 
Wapenaar, et al., 1987; Sandberg and Beylkin, 2009), which are in frequency-space domain 
and some of them needs solving linear system at each depth level, this approach performs 
downward continuation in the frequency-wavenumber domain through phase shift plus 
interpolation. The difference from one-way PSPI is that at each depth two-way PSPI applies 
positive phase-shift to downgoing wave and negative phase-shift to upgoing wave respectively 
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(in the practical implementation it is one-step calculation). The downgoing and upgoing waves 
are formulated in terms of both full wavefield and its derivative with respect to depth. Thus the 
computational cost is twice as much as the one way PSPI since derivative of the full wavefield 
needs to be calculated. The data example shows that steep dips are successfully migrated. 

Algorithm 
For the sake of  simplicity, one only considers the 2-D full acoustic wave equation with a 
constant density 
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where P  is the acoustic wavefield and v  is the velocity. Assume the velocity is constant in the 

interval ),( 0 zz and then after Fourier transformation of time and the horizontal space variables, 

the partial differential equation (1) becomes an ordinary differential equation 
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where   is the angular frequency, xk is the horizontal wave number and zk  given as 
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 is the vertical wave number. Without confusion, one still uses P to denote the 

wavefield in frequency-wavenumber domain. The negative 
2

zk  indicates that the wave is 

evanescent and it will be suppressed. Thus one can see 
2

zk  as nonnegative in the following 

discussion. The equation (2) has an unlimited number of solutions, of which, there are two 

special ones )exp( zik z and )exp( zik z with 0zzz  , downward extrapolator and upward 

extrapolator respectively. From the theory of differential equations, any solution of the equation 
(2) is in the form 

                                      )exp()exp()( 0 zikAzikAzzP zz  
,                                     (3) 

where 
A and 

A  could be any constants independent of z and ),,()( zkPzP x . When 
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 and 0A , )exp()()( 0 zikzPzP z , which is the one-way downgoing phase-shift 

extrapolation. Similarly if 0A  and )( 0zPA 
, then )exp()()( 0 zikzPzP z , which is the 

one-way upgoing phase-shift extrapolation. With the knowledge of )( 0zP as well as )( 0zPz , two 

constants in the equation (3) can be solved for as  
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which are downgoing and upgoing wavefields at the depth 0z . Hence equation (3) shows that 

applying positive and negative phase-shift to downging and upgoing waves at the depth 0z  

generates new downgoing and upgoing waves and the summation of these two new one-way 

wavefields produces full wavefields at the depth zz 0 .  The equation (3) can be simplified as 
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The formulation of )( 0 zzPz   is derived from the derivative of the equation (4) with respect to 

,z  i.e. 
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The equation (4) coupled with the equation (5) is the downward continuation of the full wavefield 
and its derivative for the velocity without lateral variations. For the constant velocity in the 

interval ),( 00 znzz  , it is easy to check that 
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and thus the extrapolation is absolutely stable in this situation. The derivative of the wavefield 

on the top boundary )0(zP  can be obtained from the absorbing boundary condition (Clayton and 

Engquist, 1977). Suppressing evanescent waves is analogous to one-way WEM, i.e. 
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For velocity with lateral variations, full wavefields with several reference velocities are calculated 
at each depth and are then Fourier-transformed to the spatial domain. The full wavefield at any 
specific location is the interpolation between two calculated reference full wavefields. The 
interpolation is guided by the velocity value.  The whole procedure is called two-way PSPI, 
which is slightly different from one-way PSPI. Since the derivatives of full wavefields have to be 
computed, the computational cost is thus twice as much as the one-way WEM. 

Data Examples  
The data examples shown is the model representing a cross section through the foothills of the 
Canadian Rockies, with the rugged surface. Images migrated through one-way WEM (Figure 1) 
and two-way WEM (Figure 2) are presented. It can be seen that the one-way WEM image is 
cleaner and has fewer artifacts than the two-way WEM image. This is quite reasonable since 
two-way WEM brings not only primary reflections but also multiples.  However, the one-way 
WEM loses steep dipping events, as opposed to the two-way WEM.  

Conclusions 
A two-way PSPI extrapolation technique is introduced for seismic migration. The mechanism is 
quite similar to the one-way PSPI. In two-way PSPI the derivative of the full wavefield needs to 
be calculated. As a two-way WEM, the computational cost is cheap. The data example shows 
that the steep dipping structure nearly 90 degrees is migrated.  
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Figure 1: Foothills of Canadian Rockies, one- way WEM image. 

 

Figure 2: Foothills of Canadian Rockies, two-way WEM image. 

 

 

 


