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Summary  
The nonuniform discrete Fourier transform (NDFT), used in many processing schemes, can be 
computed using a fast algorithm known as the non uniform fast Fourier transform (NFFT). The 
NFFT is not a new algorithm, but it is an approximation scheme that can be use to calculate an 
approximate spectrum. In one dimension, computational complexity of the NFFT is O(N log N) 
which is a dramatic improvement from the O(N2) complexity of the NDFT. This algorithm can be 
easily extended to higher dimensions. The approximate spectrum is calculated using a simple 
algorithm scheme which involves convolution of an irregularly sampled signal with a truncated 
Gaussian in the spatial domain. A new empirical expression based on numerical experiment for 
the analytical Gaussian width is proposed. Synthetic data examples, some with analytical 
solutions, demonstrate the utility and validity of this approach. The approximate spectrum 
obtained can be use further in a reconstruction algorithm. This algorithm removes the bottle 
neck from forward process by replacing NDFT with NFFT in many conventional processing 
algorithms. 

Introduction 
The problem of analyzing a signal P (tj) having irregularly spaced measurements is common in 
geophysics (Ferguson, 2006). Faulty equipment, errors in positioning, obstacles, and noise 
sources can be reasons for irregularly spaced measurements. Several approaches can be 
found which are based on some kind of interpolation techniques, but most of these approaches 
do not handle the data optimally. Transformation methods which include Radon transformations 
have been used to handle the problem of irregular sampling (Clarebout,1992).In the parabolic 
Radon transform, two CMP gathers are combined to improve offset sampling, and thus 
differences between mid point positions are ignored. Similarly, hyperbolic and linear Radon 
transforms (Clarebout,1992) as well as the parabolic Radon transform are suitable for 
estimating frequencies at irregular nodes, but they suffer aliasing problems due to sparse 
sampling. Prediction error filtering is another method which is used to interpolate missing traces, 
but it works only on regularly sampled data, and it only corrects for aliasing. if sampling is 
irregular, the result will be erroneous. Ronen et al (1991) suggests a method for DMO stacks 
which can handle irregular sampling, but it is still not efficient for very large seismic data 
volumes. Approximate regularization/datuming (Ferguson, 2006) allows extrapolation of data 
recorded on an irregular grid onto a regular grid, but it requires a velocity model. 

 My aim in this paper is to solve the forward case with a faster algorithm, as done by Duijndam 
and Schonewille (1999) and Greengard and Lee (2004). I will begin with the theory behind the 
algorithm structure for NFFT.  After reviewing the basic algorithms, improvements are 
suggested in the NFFT algorithm. Then, using synthetic examples to validate the  algorithm and 
I show that the NFFT is approximately 100 times faster than the NDFT, and that the 
approximate spectrum obtained using NFFT gives a good approximation to the original 
spectrum. 

Theory  
The NFFT algorithm can be numerically expressed in following steps: convolution, FFT, and 
deconvolution. Two parameters are significant in our algorithm, one is numerical width q of the 
truncated filter, and other is analytical width b for Gaussian filter. Convolution with the short 
Gaussian filter g(x) is carried out to make the signal approximately band-limited according to 
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where pg(m) is the result is the result of spatial convolution. Equation 1 can be written as 
multiplication in the Fourier domain as  

                   ( ) ( ) * ( )Pg m G m P m  

where pg(m) is the Fourier spectrum of pg(m)  in Fourier domain. For efficiency Gaussian need 
to be truncated, thus generating n samples for pg(m)  where 
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and where integer(x) truncates to the largest integer smaller than x for x≥0. The algorithm is 
initialized at pg(n), where subscript g indicates we apply a truncated Gaussian and keep 
updating by summation of the N shifted filters. This summation of N shifted filter can be given by 

                         ( ) ( ) ( )g g n np n p n xp g n x x                              

Equation (4) spreads the irregular samples onto a regular grid. The sampling is ( )gp n = 

( )nxp g n x  , similar to equation (5) in the Fourier domain which can be written as 
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When Pg(m) is broadband, aliasing will occur when ( )G m IN ≠0 for any I≠0. It is suggested that 

removal of the aliasing requires making the signal periodic. 
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where ( )gp n IN =0 outside the interval given by equation (3). Convolution of the signal followed 

by the discrete transform can be represented by 
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where Pg(m)FFT is the spectrum obtained using the FFT. Finally correction for convolution is 
carried out by deconvolution in the Fourier domain according to 
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where P(m) is the approximate spectrum and G(m) has been defined by Duijndam and 

Schonewille (1999) as 
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Computational cost for calculating the approximate spectrum can be written as 

                               t=Convolution(qN) + FFT (NlogN) + Deconvolution(N)  

which is much faster than the conventional cost of O(N2). The numerical width q and the 
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analytical width b affect the performance of the low pass filter. Increasing the numerical width of 

Gaussian increases the accuracy of the results. Rms error is calculated  in Figure 1 and Figure 
2 between slow NDFT and NFFT for optimal q and b. On the basis of numerical experiments, an 
improvement is suggested with respect to the width of the gauss pulse. Empirically, an 
analytical gaussian width can be written as 

4.75
b=

.q dx
 

where dx is spacing of regular grid. 

Examples 
Algorithms cannot be applied, unless they are compared with some analytically available 
solution. For this purpose we are applying our algorithm to the analytically available solution of a 
Ricker wavelet and compared with its frequency domain representation. Figure (3), shows an 
application of the NFFT on the uniformly sampled Ricker wavelet which is giving the same result 
in Figure 3(b) as the analytical solution in Figure 3(c) of the wavelet.  Figure 4(c) displays the 
effect of increasing the number of sample points, and makes it non-uniform. Increasing the 
number of sample points elevates the noise in the spectrum, although all frequencies are 
obtained. This presence of noise can be explained from the fact that in NFFT, columns of the 
Fourier matrix are not orthogonal to each other. Also, some noise will be observed when the 
signal is undersampled .Similarly, Figure 5 shows a seismic trace with with 5000 sample point 
and 25% decimated and its approximated frequency spectra, RMS error of 10-1 wrt FFT of the 
original spectrum. Accuracy and speed of NFFT can be given by Table 1 and 2. Table 1 
compares the computational performance of three different algorithm FFT, NDFT(Dujhdham, 
1999), and NFFT in seconds and table 2 gives rms error wrt original spectrum 

 

 

 

 

 

 

 

 

 

 

Conclusions 
NFFT can be a major part of conventional algorithms. The tremendous improvement over NDFT 
allows us to handle  large impractical and uneconomical data sets in an efficient way. 100 times 
speed up is achieved by NFFT over NDFT.  A new generation of fast algorithms can be 
developed based on the NFFT approach, which can take advantage of irregular sampling to 
handle the problem of aliasing.                                                                
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Table 2: Error Analysis 

M=N NFFT NDFT 

100 1.2E-04 1.63E-05 

1000 1.7E-03 2.0E-05 

2000 1.8E-03 2.2E-05 

5000 2.2E-03 8.7E-04 

7000 2.0E-03 7.9E-04 

  

Table 1: Computational Performance 
(Seconds) 

N=M FFT NDFT NFFT 

100 0.0078 5.4 15 

1000 .013 48.2 34.4 

5000 0.299 1125 96.6 

10000 0.645 4390 190.5 

15000 0.971 10020 258 
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           FIG 1. RMS Error for varying q                                      FIG 2. RMS Error for varying Analytical                             

FIG 3. a) Ricker wavelet  b) Analytical spectrum                         FIG 4. a) Ricker wavelet  b) Analytical spectrum  

           c) NFFT spectrum                                                          c) NFFT spectrum                                                      

           

                       FIG 5.  Comparison of Original spectrum and NFFT spectrum  for Seismic trace         
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