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Summary  
 We derive reflection(R) and transmission (T) coefficients in the plane wave domain (PWD). By 
deriving R & T coefficients in the PWD for 3D media, the determination of dip and azimuth of 
interface are avoided, and, thereby, we avoid ray tracing and exposure to caustics especially in 
anisotropic media. Classical R & T coefficients in plane wave coordinates are worked out for 
reflectors aligned with the computational grid. For non-aligned reflectors, those with dip and 
azimuth, computation of effective R& T coefficients is not straight forward, for this the coordinate 
system must be rotated. To do this, a normal for each individual plane wave based on local 
velocity and vector cross product of this normal with the normal to reflector are computed. This 
cross product yields a ray parameter that presently is used to compute corresponding R & T 
coefficients for a given plane wave. The importance of this approach is the automatic adaptation 
of R & T coefficients expression to a special case of dipping interface. Another importance of R 
& T coefficients in the PWD is their use in Rayleigh Sommerfeld Modeling (RSM) of seismic 
data. Since reflected and transmitted wave amplitudes depend on R & T coefficients. These 
coefficients play an important role in the wavefield extrapolation. Further, monochromatic 
wavefield extrapolation can be done in the PWD with the guaranty of reduced computational 
time. Thus, R & T coefficients in the PWD can play an important role in RSM also. In-line traces 
and cross-line traces are required in order to model the plane wave inputs. The problem 
associated with data acquisition is revealed here by changing the number of cross line traces. 

Introduction 
Historically, the calculation of R & T coefficients for plane waves on, both, a free surface and a 
welded contact interface, was obtained by Zoeppritz (Borejko, 1996). This work was elaborated 
upon by Aki and Richards (Aki, 1980). The assumption of 2D plane waves ensures us to 
discuss two separate groups of waves, the coupled P and SV waves, and the SH waves 
(Slawinski, 2003). Further, assuming isotropy, the standard ‘2D’ formulas can be used for any 
plane reflector regarding its 3D orientation (Krebes, 2008). Presently, only SH wave is 
considered for simplicity. The analytic expressions of R and T coefficients for three dimensional 
plane waves in elastic media were given by Borejko (Borejko, 1996). Generalized ray integral 
representations of pertinent waves were used in that paper. A generalized ray integral 
representation of SH wave for dipping structure was given by Ziegler and Pao (Pao, 1984). The 
importance of R & T coefficients in the PWD for RSM has been discussed by author in another 
paper (Sharma, 2009).The following section shows how to express R & T coefficients in the 
PWD. 

Theory  
The analytic expression of R & T coefficients are known in terms of angle (Kennett, 2001). The 
angle of incidence is the angle that of the incident and scattered plane make with the normal to 
the plane reflector. The plane of incidence can be represented by the unit normal vector to the 

plane wave in the propagation direction and can be computed as (Ferguson, 2008)  

 

 
 

(1) 
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where ,  are the input plane wave parameters,  is the vertical slowness in the incident 

medium and , , and  are coupled according to relation derived from the dispersion 
relation as 

 

                                                  ,                                           (2) 
 

here  is the velocity of a wave in the incident medium. The unit normal associated with the 
reflecting surface can be computed as 

                           ,                                 (3) 
 

where  is the dip and  is the azimuth of the normal to the interface. These two unit normals 
are shown in Figure 1. Following simple vector calculus, the cross product of these normal 

vectors implicitly determines the angle of incidence, , as 
 

,       

 

The sine is related to the effective ray parameter, , along the interface as 
 

                            .                                       (5) 

 
Thus, the angle of incidence is obtained according to equation (5).This value is substituted now 
in the known analytic expression to obtain R & T coefficients in the PWD and can be written as 

 

 
and 

 
  

where  are the density and velocity, respectively. The incident and refracted medium are 

indicated by subscript 1 and 2, respectively. The vertical slowness  is determined by 

 
and  is described as  

 

Dipping interface problem:  
The above expressions for R & T coefficients can be used for a special case of the dipping 
interface problem. In this case the normal to the interface would be different from the normal of 
horizontal and can be computed from equation (3). Normal to the interface lies in the plane of 
propagation is assumed here. This constraint is applied on the equation (3). This assumption 
ensures that SH wave is still decoupled from P and SV waves (Sten, 2002). Now, the ray 
parameter for each individual plane wave is computed according to equation (5) and used in 
equations (6) and (7) in order to obtain R and T coefficients for dipping interface, respectively. R 

(4) 

(6) 

(7) 

(8) 

(9) 
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and T coefficients for in-line and cross-line slices can be obtained using =0, =0, 

respectively, with different values of   and  from equations (8) and (9). Recalling equation 

(5) for =0, the effective ray parameter is the same as horizontal slowness  in the 2D case, 

and for =0 it would be .  

Examples 
To explore how R & T coefficients change with and , an example in which =1500 m/s 

and =2500m/s with constant density across the reflector is considered. Figure 2 shows the 
3D real and imaginary part of R & T coefficients, respectively. Presently, 512 in-line and cross-

line traces are used for a particular frequency, 40Hz. Symmetrical behavior of R & T coefficients 

with respect to , =0 is shown in this Figure. Figure 3 shows the in-line and the cross-line 
slice of R&T coefficients. In this case, the obtained results for in-line and cross-line slices follow 
the theoretical behavior along slowness axes. After the critical slowness (it is 0.0004m/s in the 
present case), due to the imaginary nature of vertical slowness, the complex behavior of R & T 
coefficients is demonstrated in this case. Following the theory, there will be a distortion of the 

reflected and transmitted pulses at  >1/  [4] as depicted in Figure 3. Figure 4 shows the real 
and imaginary part of the 3D R and T coefficients when the interface is dipping. In-line and 
cross-line slices of the R & T coefficients are shown in Figure 5. The region in between negative 
and positive critical slowness is shifted, and the former symmetrical behavior about zero 
slowness no longer holds here in this Figure. The reflected and transmitted amplitudes are not 
getting values 1 and 2 respectively at positive critical slowness here. The reason for this 
discrepancy will be revealed in next cases. 3D R & T coefficients can be obtained in the similar 
way with same in-line traces as previously but different cross-line traces (128, 8) for horizontal 
interfaces. In-line slices of R & T coefficients for both cases are the same as shown in Figure 3. 
Cross-line slices of R & T coefficients for both cases are shown in Figure 6. According to this 
Figure the reflected and transmitted amplitudes are holding the values as per theory at and near 
to zero slowness. Presently, the obtained reflected and transmitted amplitudes at critical 
slowness are deviating from expected results. The absence of a sample point with calculation at 
critical slowness is the responsible for this. The sample rate depends on the number of traces 
inversely. Interpolation is used to get the values at all points between two sample points. 
According to theory, there is large difference between the values of the reflected and 
transmitted amplitude at the sample points on either side of the critical slowness. Interpolation is 
not sensitive to these kinds of abrupt changes. Thus, the obtained results differ from the 
expected one. The shifting of R & T along slowness axes leads to no more symmetry about zero 
slowness as depicted in these slices for dipping interface. The inconsistency in the reflected and 
transmitted amplitudes at positive and negative Nyquist has been registered in both kinds of 
slices. The main reason for this inconsistency is the program implementation in which negative 
Nyquist is used as per theory but positive Nyquist is taken as the difference of positive Nyquist 
and sample rate. With a coarse sample rate, the difference between positive and negative 
Nyquist becomes considerable and gives distorted results. 

Conclusions 
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3D R & T coefficients have been obtained in the PWD by using an effective ray parameter 
approach. First, R & T coefficients have been obtained for the reflector aligned with the 
computational grid. It has been shown that obtaining R & T coefficients for the reflector non-
aligned with computational grid is little bit tricky. The importance 
of this approach is the automatic adaptation of R and T 
expressions to the special dipping interface case. The power of 
this is that no ray tracing is required. The obtained R & T 
coefficients for the same number of in-line traces but different 
number of cross-line traces deviate from the expected ones and 
give the distorted picture of subsurface even for isotropic media. 
This reveals the problems associated with data acquisition and 
force us to acquire data correctly. 
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FIG.4 a) Real part of the R 
coefficient .b) Imaginary part of the R 
coefficient. c) Real part of the T 
coefficient. d) Imaginary part of the T 
coefficient for a dipping interface  

 

FIG.5. a) In-line slices of the R 
coefficient. b) Cross line slice of the R 
coefficient. c) In-line slice of theT 
coefficients. d) Cross-line slice of the T 
coefficient for a dipping interface 

FIG.6. Cross-line slices of the R 
coefficient a) with 128 traces b) 
with 8 traces. Cross-line slices of 
the T coefficient c) with 128 
traces d) with 8 traces for a 
horizontal interface. 

FIG.1. Schematic representation 

of unit normals to plane wave 

and tilted interface. The angle of 

incidence  is the angle between 

normal  and . 

 

FIG.3: Horizontal interface FIG.2: Horizontal interface 
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