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Summary 

The feasibility of different approaches of using the multigrid methods in solving the linear system 
of Kirchhoff Least-Squares Prestack Time Migration (LSPSTM) equation is investigated. 

This study showed that conventional method of multigrid is not viable to solve the Kirchhoff 
LSPSTM equation for at least two reasons: first, the Hessian matrix is not a diagonally dominant 
matrix, therefore, standard iterative solvers of the multigrid are not effective, second, Hessian 
matrix is too large and dense to be loaded in the memory of today’s computers.  

The performance of Conjugate Gradient (CG) multigrid is discussed. It is shown that because 
CG does not have a smoothing property, it should not be considered as an effective multigrid 
iterative solver.  

Introduction 

Kirchhoff seismic modeling can be defined by  

 ,       (1) 

where  is the seismic data,  is the earth reflectivity, and  is the Kirchhoff forward 
modeling operator, a matrix containing diffraction hyperbolas. The inversion process,  

 ,  (2)  

recovers the earth reflectivity model from seismic data. Inverting the  matrix is extremely 

difficult. The transpose of  which is migration may be used as an approximation to the : 

 ,  (3) 

where is the migrated image and  is the migration operator. Kirchhoff migration produces 
some artifacts in the migrated image. These migration artifacts can be attenuated by the Least-
Squares Migration (Nemeth et. al., 1999). LSPSTM of the seismic data is obtained by 
minimizing the following general cost function:  

,   (4) 

where  is a regularization term, and is tradeoff parameter. Euclidian norm is the 

simplest form of the regularization term, , which leads to the Damped Least-

Squares solution, , of the problem obtained by solving following equation: 

         (5) 

Many other regularization functions exist. For example solution to a LSPSTM problem with 

smoothing the regularization, , is obtained when , where  is the first 
derivative in the offset direction: 
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    .     (6) 

With the ability of attenuating of migration artifacts, LSPSTM images have higher resolution than 
those from migration (Nemeth, 1999). However, two disadvantages are accompanying this 
method. In addition to the requirement of the accurate velocity information, LSPSTM is more 
computer time and memory consuming than the migration (Yousefzadeh, 2008).  

The performance of least-squares seismic migration usually requires solving a large system of 
linear equations in the general form of:  

    ,       (7) 

where  is a general  matrix, for example Hessian matrix, , in Equation 5 or 

, in Equation 6,  is a vector with  known elements, for example migration 

image, and  is the unknown Least-Squares solution. In the LSPSTM equation, the Hessian is 
a large matrix which is too difficult to be solved using direct methods. Thus, iterative methods 
replace the direct methods. If a problem is solvable by the multigrid methods, it will be solved 
faster and with better recovery of the low frequency contents than many other methods such as 
Successive Over Relaxation (SOR) and CG (Stuben, 2002). 

In this study, feasibility of using multigrid properties for solving LSPSTM in order to reduce the 
computational cost or enhance the resolution of the resulted image is investigated. It has been 
shown the reason that multigrid with its conventional solvers is not viable to solve the mentioned 
problem and CG multigrid is not an effective method. 

Solving LSPSTM using standard multigrid 

It can be shown that the Jacobi and Gauss-Seidel methods converge to the solution if matrix 

in Equation 7 be diagonally dominant and the convergence rate is slower for lower 
frequencies of the solution (Strang, 1986). Removing high frequency contents from residuals in 
the Jacobi (or the Gauss-Seidel) first few iterations produces a smooth error vector including 
mostly low frequency contents (Briggs et. al., 2000).   

In the method of multigrid, an iterative solver produces low frequency contents in residual after a 
few iterations on Equation 7. By restriction, the kernel of the main problem and its residual are 
transferred to a coarser grid, where the low frequency components act as the high frequency 
components. Solving the original equation with a solution to the problem in the coarse grid as 
the starting point returns an answer which contains more low frequency contents than the 
solving equation with a vector of zeros as the initial guess (Strang, 1986). This algorithm called 
a v-cycle multigrid. The algorithm can be extended to the finer grids (V-cycle), or to perform 
more iteration on the coarser grids (W-cycle) (Strang, 1986; Briggs et. al., 2000).  

Jacobi and Gauss-Seidel are conventional multigrid solvers. In both, it is necessary to extract 

the diagonal elements of the matrix  and invert it. Therefore, in order to apply multigrid to the 

LSPSTM, it is necessary to have its Hessian matrix in the explicit form. The size of matrix  in 
LSPSTM equals to the size of the data multiplied by the size of the migration image. Therefore, 

 can be large enough to be impossible to be loaded in the memory of today’s computers.  

However, the experiences with the explicit form of Hessian matrices, for different data 
acquisition geometries show that they are not diagonally dominant. For instance, for a modeling 
operator with two sources with 180 m interval spacing and five receivers per source with 72 m 

interval spacing and with a model 632 m long distance and 0.512 seconds depth, matrix  

has 10% nonzero elements as shown in Figure 1a. With eight bites per word precision,  
needs more than 120 megabyte memory for this small synthetic example. Figure 1b shows the 
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ratio of absolute values of diagonal elements to the sum of absolute values of nondiagonal 

elements for each row of the  matrix. Examples show that adding a reasonably large 
amount to the diagonal elements of the Hessian matrix or applying restriction to that does not 
change it to a diagonally dominant matrix.  

Splitting  matrix to be correspondent to columns of LSPATM image in order to solve the 
problem by inverting one column at each time does not produce diagonally dominant matrices.  
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(a) (b) 
Figure 1. (a) Non-zero elements of matrix . (b) The ratio of absolute values of diagonal elements to the sum of 

absolute values of nondiagonal elements for each row of . Values higher than 1 are diagonally dominant rows.  

Multigrid LSPSTM with CG as the solver 
CG is a powerful method for solving a system of linear equation. Without requirement of large 
memory size, after a few iterations, CG Least-Squares (CGLS), an extension of CG for the 
normal equations, retrieves a high resolution image of the earth subsurface reflectivity. 
However, CG does not have a smoothing property. In fact, CG methods are roughers and not 
smoothers (Shewchuk, 1994). This property is shown on a LSPSTM problem. Figures 2a and 
2b show the convergence rate of CGLS for a synthetic model with different dominant 
frequencies in the data. These figures show no better convergence when data include higher 
frequency content in both damped and smoothed LSPSTM. Convergence of CG method for 
LSPSTM does not depend on the frequency contents of data. 

When an iterative method dose not converge faster for data with higher frequency contents than 
the data containing lower frequency contents, it is not able to leave low frequency contents in 
the residuals and act as the smoother. Therefore, CG methods should not be an effective solver 
for the multigrid.  

There are three main approaches to applying multigrid to a LSPSTM equation. In order to 
transfer the problem to a higher or lower grid sizes, restriction and interpolation of a LSPSTM 
problem can be applied in each, horizontal or distance, vertical or time, or both directions of the 
model. As shown in the previous section, applying multigrid in the vertical (time) direction should 
not improve the performance of LSPSTM since the convergence is not faster for the lower 
frequency components of the data. The analyses of using multigrid CGLS with restriction and 
interpolation in the distance direction is shown by comparison between multigrid CGLS and 
CGLS (Figure 3). Restriction to a coarser grid is performed by deleting half of the traces 
(leavening one trace and removing next one) from the migration image. Figure 3a is the true 
model, Figure 3b shows the image of Kirchhoff LSPSTM with five iterations on the CGLS, and 
same results is obtained from performing a full multigrid CGLS with five iterations on each grid 
(Figure 3c).  
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Conclusion 
Numerical examples showed that time domain LSPSTM problem is not solvable by the Jacobi 
or Gauss-Seidel iterations. Consequently, the conventional multigrid is not viable to the 
mentioned problem. Requirement of large memory size is another problem associated with this 
method. 

CG is an effective solver. However, CG is not a smoother. Therefore, using CG as the multigrid 
solver does not increase the speed of convergence or provide a better recovery of the low 
frequency contents. Using multigrid with CG as the iterative solver may slightly reduces the 
number of iterations for the same rate of convergence in comparison to the CGLS by 
introducing an initial value. However, it may not reduce the total computational cost. 

5 10 15 20 25 30 35 40
10

20

30

40

50

60

70

80

90

100

Iteration #

E
rr

o
r 

N
o

rm

 

 

10 Hz

35 Hz

60 Hz

85 Hz

 
5 10 15 20 25 30 35 40

40

50

60

70

80

90

100

Iteration #

E
rr

o
r 

N
o

rm

 

 

10 Hz

35 Hz

60 Hz

85 Hz
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Figure 2. (a) Convergence of CGLS to solve damped LSPSTM for a synthetic model with wavelets having different 
dominant frequencies: 10, 35, 60, and 85 Hz. (b) Similar results with regularized LSPSTM. 

 
Figure 3. Comparison between true model (a), CGLS (b), and Multigrid CGLS (c) of a synthetic seismic dataset. 
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