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Summary  
Three-term AVO inversion can be used to estimate subsurface information about P-wave and S-
wave velocities and, in addition, density. The density term, however, exhibits little sensitivity to 
amplitude variations and therefore, its inversion is unstable. One way to stabilize the density 
term is by including a scale matrix that provides correlation information between the 3 unknown 
AVO parameters. In this article, we investigate a Bayesian procedure to promote sparsity in the 
estimation of highly correlated AVO model parameters. To this end, we model the prior 
distribution of the AVO parameters via a Trivariate Cauchy distribution. We present an iterative 
algorithm to solve the Bayesian inversion and, in addition, we provide comparisons with the 
classical inversion approach that uses a Multivariate Gaussian prior distribution.  

Introduction 
AVO inversion is one of the techniques that are being used to estimate subsurface physical 
parameters such as P-wave velocity, S-wave velocity, and density from seismic reflection data. 
The AVO inverse problem is an ill-conditioned problem. In other words, small perturbations in 
the data result in large perturbations in the estimated parameters. The latter makes AVO 
inversion unstable, particularly, when one attempts to estimate the density term (Downton and 
Lines, 2004; Li, 2005). One way to stabilize the inversion is by including prior information.  To 
this end, we propose to use the classical Bayesian framework and prescribe a prior distribution 
that promotes sparse and correlated AVO solutions (Alemie, 2010). For this purpose, we 
investigate the application of a Trivariate Cauchy probability distribution to model the prior 
distribution of AVO attributes. The Trivariate Cauchy distribution is a special case of the 
Multivariate t distribution with three variables and one degree of freedom (Chauanhai, 1994; 
Johnson and Kotz, 1972). This prior distribution allows incorporating the correlation information 
via a scale matrix. In addition, the Trivariate Cauchy distribution has long tails and therefore, it is 
a prior that promotes the formation of sparse solutions.  

Theory  
The forward physical model is the three-term Aki and Richards's approximation to the Zoeppritz 
equations (Aki and Richards, 1980). It consists of three model parameters namely P-wave 
reflectivity (A), S-wave reflectivity (B) and density reflectivity ( ). These parameters or attributes 
are represented in vector form via . The relationship between the observed data, , 
and the model parameters, m, can be expressed as follows  
 



  , (1) 
 

where  is a linear operator that includes a wavelet convolution matrix and the offset dependent 
amplitudes associated to the Aki and Richards AVO approximation (Buland and Omre, 2003). 
The operator is built using a smooth background model and by considering a zero phase offset 
dependent wavelet estimated from the data (Alemie, 2010). The last term in equation (1) 
represents the noise that considers observational, processing and operator errors. Equation (1) 
is valid for a single AVO gather and can be regarded as a multi-dimensional convolution 
operator that transforms the 3 AVO traces, and   into a multi-channel seismic 
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signal (the AVO gather). In this regard, it is clear that AVO inversion can be interpreted as a 
process analogous to multi-channel deconvolution (Downton and Lines, 2004). The three-term 
AVO solution is found by minimizing the following objective function 
 



   . (2) 

 
The last equation is derived using the Bayesian framework by considering Gaussian errors and 

a priori distribution that induces the regularization term R(m). Alemie (2010) proposed to use a 

Trivariate Cauchy distribution as prior for the AVO inverse problem. In this case, one can show 
that the regularization term induced by the Trivariate Cauchy distribution is given by 
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 , (3) 

where 
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The matrix  is the scale matrix of the problem. This matrix plays the role of the correlation 
matrix in Gaussian statistics and therefore, contains entries with correlation among the AVO 
parameters. The matrix D is defined as 
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where N is the number of time samples. This matrix is needed to accommodate the fact that m 

contains the 3 AVO time series in a single column vector. Minimizing the Bayesian cost function 
leads to the following solution 
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where     
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Note that the matrix Q is a non-diagonal matrix, which contains the scale matrix of the problem. 
In real scenarios the scale matrix can be computed by measuring correlation between 
parameters from borehole-derived AVO attributes (Downton and Lines, 2004). The matrix 



  is a 
muting operator that is included to avoid fitting data in the regions were mutes were applied to 
control excessive stretch or to control the fact that the AVO model is no longer valid after a 

maximum offset or angle.  The parameter  is the hyper-parameter that is determined to yield 

solution with optimal degree of fitting. The latter can be achieved by two methods: L-curve 
approach or by the Chi-square test (Tarantola, 1987). The system in equation (6) is non-linear 
and therefore, an iterative approach is used to find the AVO solution. This is equivalent to use 
the well-known iterative reweighed Least-squares algorithm to solve sparsity-constrained 
problems (Sacchi and Ulrych, 1995). In general, about 3-4 iterations are required to reach a 
sparse solution for the three-term AVO parameter problem.  
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Examples 
In this section, synthetic and real data examples are used to demonstrate the regularization 
strategy outlined above. Using the velocity and density models provided in Figure 1 and a 35Hz 
Ricker wavelet, synthetic data are generated (Figure 2). The inversion is run in a selected time 
window 0.2 s to 0.636 s with an overlap of a length of the wavelet. The stability and quality of 
the inversion was accessed using a Monte Carlo simulation. In Figures 3a-3i, each plot depicts 
the root mean square errors versus signal to noise ratio (S/N) for the three model parameters: 
root mean square errors for P-wave reflectivity (RMSEA), S-wave reflectivity (RMSEB) and 
density reflectivity (RMSEC). The columns in Figure 3 show the type of prior distribution used: 
Univariate Cauchy, Multivariate Gaussian and Trivariate Cauchy. Note that the error portrays 
the deviation of inverted parameters from their true values. The error bars represent the 
corresponding standard deviations. It is easy to observe that increasing the noise level 
increases the uncertainty in the inverted result. The errors are quite large in the case of 
Univariate Cauchy prior. In addition, the Univariate Cauchy prior lacks of stability. In other 
words, sparsity is achieved but the 3 AVO terms are not showing a good degree of correlation. 
This is simply because the Univariate Cauchy treats the parameters as if they were 
uncorrelated. The Multivariate Gaussian gives better results than the Univariate Cauchy as it 
allows including the correlation. In addition to stabilizing the inversion via the scale matrix, the 
Trivariate Cauchy prior plays a role in making the solution sparse and hence enhanced 
resolution. 
 
The real data set consists of 61 NMO corrected CDP gathers. The offset ranges from 240 m - 
3210 m. The time ranges from 0 to 1.502 s with sampling interval of 2 ms. The wavelet is 
estimated from each trace and an average wavelet was used for each CDP. Well-log data was 
used to incorporate the correlation information matrix in the inversion. Understanding the 
ineffectiveness of the Univariate Cauchy prior distribution, the real data inversion was done only 
for the other two prior distributions: Multivariate Gaussian and Trivariate Cauchy. Figures 4a, 
4b, and 4c are the results of the inversion using the Multivariate Gaussian as prior distribution. 
Figures 5a, 5b, and 5c are results of the inversion using Trivariate Cauchy as prior distribution. 
The same trend is observed using both the Gaussian and Trivariate Cauchy priors that reflects 
they do a similar job in incorporating the well-log information thereby stabilizing the inversion. As 
expected, the result has better resolution in the case of Trivariate Cauchy. 

Conclusions 
Both synthetic and real data examples demonstrated that including correlation information in the 
AVO inverse problem helps to add stability to the inversion. This is particularly important if one 
wants to invert the density term. This in turn increases reliability of the estimated parameters. 
Long tail prior distributions like the Trivariate Cauchy distribution do help to introduce sparsity in 
the solution and thereby, they lead to results with enhanced resolution.  
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Figure 1: (a) P-wave velocity (b) S-wave 

velocity and (c) density. 

Figure 2: Synthetic data (a) without noise  

(b) with noise S/N=4.  

Figure 4: (a) P-wave reflectivity (b) S-wave reflectivity, and (c) density 

reflectivity using a Multivariate Gaussian prior distribution.  

Figure 5: (a) P-wave reflectivity (b) S-wave reflectivity, and (c) 

density reflectivity using a Trivariate Cauchy prior distribution. 

Figure 3: Error analysis obtained via 20 realizations for each S/R. 


