
GeoCanada 2010 – Working with the Earth 1

 

Robust reconstruction of irregularly sampled geophysical 
time series via a sparse spectral representation 
Nadia Kreimer and Mauricio D. Sacchi 

Department of Physics and Institute for Geophysical Research, University of Alberta, Edmonton, 
Alberta, Canada 
kreimer@ualberta.ca 

Abstract 
Reconstruction of time series with insufficient amount of samples is a common problem in 
geophysical signal processing. In this article, the spectral components of the signal are 
recovered via the minimization of an objective function that includes a sparsity constraint. We 
also incorporate an error re-weighting strategy to minimize the influence of outliers in the final 
spectral estimator of the time series. A paleoclimatic record from the Lake Baikal drilling 
program is used to test the algorithm. 

Introduction 
In signal analysis, in particular in geophysics and astronomy, we often encountered irregularly 
sampled time series contaminated with outliers (Ferraz-Mello, 1981; Branham, 1986). The 
spectral analysis of this type of series can be tackled via Fourier inversion (Sacchi et al., 1988). 
In this case, we seek the set of complex Fourier coefficients that can recover the irregularly 
sampled time series. The inclusion of weights in the misfit function permits, in addition, to 
control the influence of outliers. This is important, in particular, when analyzing noisy time series 
like those arising in paleoclimatic studies. As an example, we examine real data records of 
magnetic susceptibility from Lake Baikal in Siberia (Kravchinsky et al., 2007). 

Theory    
Classical harmonic analysis methods approximate an observed signal via a sum of complex 
exponentials of unknown frequencies, phases, amplitudes and number of frequencies. The 
latter constitutes a non-linear problem. In this paper, we propose a linear formulation where we 
consider a dense distribution of frequencies and we exclusively invert for the associated 
complex amplitudes (Sacchi et al., 1989; Bourbignon et al., 2007).  

The time series is modeled via the sum of frequencies, with , where is the number of 
observations. Let  be the unknown complex spectral amplitudes and  the additive noise. The 
irregularly sampled time series can be written as follows  
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Last equation can be rewritten in matrix form as follows  To solve the problem we 
propose to use a solution that promotes sparse spectral estimators. For this purpose we 
minimize the following cost function 
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The first term in equation 1 is the misfit function; the second is the regularization term. We have 

chosen a 
1  regularization to promote sparse solutions (Alliney and Ruzinsky, 1994). The trade-

off parameter λ is used to control the sparsity of the solution. Following Bourbignon (2005), the 
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minimization of equation 2 is carried out via an iterative coordinate descent (ICD) algorithm. If  

is the  column of matrix , and
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follows 



 

  

  

  













 (3) 

 

The iterative process stops when a predetermined misfit is reached. Sparse spectral estimates 
are often difficult to obtain when the time series are contaminated with outliers. Incorporating 
weights can alleviate this problem. In other words, we now minimize the cost function 
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 ,      (4) 

where the matrix is diagonal with elements given by Andrew’s weights (Leffler and Jay, 2008).  
The weights are extracted using an interactive approach. We start by computing the solution 
using unitary weights. Then, the residuals are used to compute a new set of weights and a new 
solution.  

Examples 

Synthetic example: Figure 1a provides a synthetic example. A monochromatic waveform 
contaminated with random Gaussian noise and outliers is provided. The goal is to reconstruct 
the series and estimate the sparse amplitude spectrum of the data using the algorithm 
presented in this article.  The reconstruction fails when the sparsity-promoting algorithm does 
not consider the presence of outliers (Figures 1b and c). On the other hand, the weights were 
able to control the influence of outliers and the time series was properly reconstructed (Figures 
1d and e). 

Lake Baikal records: We test the proposed reconstruction algorithm using a real data set. The 
data consist of whole-core magnetic susceptibility κ  records from the Lake Baikal drilling 
program in Siberia (Kravchinsky et al., 2007). Core data was converted from depth to time 
resulting in a paleoclimatic record of magnetic susceptibility. We have analyzed a small window 
of 210 samples spanning about 900Ky. The desired sampling interval was Δ . The latter 

corresponds to a Nyquist frequency of 0.5 cycles/ky. The data were de-trended to filter very low 
frequency components prior to reconstruction and spectral estimation. First we run the algorithm 
using unitary weights ( ). This assumes that the errors in the time series are Gaussian.  The 
reconstruction is portrayed in Figure 3. It is evident that the reconstructed signal is adjusting 
outliers. The normalized sparse power spectrum of the reconstructed signal shows many non-
zero spurious components.  In our second test, we reconstruct the data and estimate the 
spectral amplitude using Andrew’s weights.  The results are portrayed in Figure 2. The 
reconstructed signal adjusts the data in a smoother way, ignoring the outliers. Logically, this 
makes the power spectrum less noisy. The sparse power spectrum can now identify a discrete 
set of frequencies that coincide with some astronomical cycles (Milankovitch periodicities). The 
main astronomical cycles are 640, 400, 100, 41, 23 and 19 ka (Kravchinsky et al., 2007).  
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Figure 1. Synthetic example. Reconstruction of a sinusoid contaminated by outliers. a) Original signal 
(blue) and observations (green stars). b) Reconstruction using the sparsity promoting spectral norm. c) 
Sparse amplitude spectrum estimated from the data. d) Reconstruction using sparsity promoting spectral 
norm and weights to de-emphasize the influence of outlines. e) Sparse spectrum estimator when weights 
for outlier rejection are included.  

 

Conclusions 
The problem of reconstruction of irregularly sampled data is solved via the minimization of an 

objective function that consists of a misfit term and a 
1 norm term. The last term introduces a 

sparsity constraint to the spectral amplitudes of the time series. An ICD method is employed for 
calculating the solution for this underdetermined inverse problem (Bourbignon, 2005). 

The presence of outliers will deteriorate the reconstruction of the time series and produce 
sparse spectra dominated by artifacts. Therefore, we have proposed to include an error-
reweighting scheme to minimize the influence of outliers.  

References 
Alliney, S., and S. A. Ruzinsky, 1994, An algorithm for the minimization of mixed L1 and L2 norms with application to 
Bayesian estimation: IEEE Trans. Signal Processing, 42. 

Bourbignon, S., and H. Carfantan, 2008, New methods for fitting multiple sinusoids from irregularly sampled data: 
Statistical Methodology, 5. 

Branham, R. L., 1986, Is robust estimation useful for astronomical data reduction?: Quarterly Journal RAS, 27. 

Ferraz-Mello, S., 1981, Estimation of periods from unequally spaced observations: AJ, 86. 

Kravchinsky, V. A., M. E. Evans, S. H. Peck, J. A., M. A. Krainov, J. W. King, and M. I. Kuzmin, 2007, A 640 kyr 
geomagnetic and paleoclimatic record from Lake Baikal sediments: Geophysical Journal International, 170. 

Leffler, K. E., and D. A. Jay, 2008, Enhancing tidal harmonic analysis: Robust (hybrid L1 /L2) solutions: Continental 
Shelf Research, 29. 

Sacchi, M. D., T. J. Ulrych, and C. J. Walker, 1998, Interpolation and extrapolation using a high–resolution discrete 
Fourier transform: IEEE Transactions on Signal Processing, 46. 

Ulrych, T. J., M. D. Sacchi, and A. Woodbury, 2001, A Bayes tour of inversion: A tutorial: Geophysics, 66. 

 

 



GeoCanada 2010 – Working with the Earth 4

 

 

 

 

 

 

 

Figure 2. a) Reconstruction of a segment of the Lake Baikal magnetic susceptibility record using sparsity promoting 
inversion b). The associated sparse amplitude spectrum. c) Reconstruction of the time series when outliers are de-
emphasized in the inversion via an error-reweighting strategy. d) Final sparse amplitude spectrum obtained with the 
error-reweighting strategy. Vertical red lines indicate known Milankovitch periods T=640, 400, 100, 41, 23, 19 ky. 

 


