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Abstract

We congider a time-marching algorithm to numerically solve the acoustic wave equation.
Unlike finite-difference solvers, our method is not digpersive, and ig based an analytic so-
lution to the constant velocity wave equation. The analytic solution iz too numerically
complex to calculate and so is approximated with a Taylor-series expansion. The computa-
tional properties of the approximate solver are similar to higher-order in time pseudospectral
methods.

Introduction

Reverge-time migration (RTM) and forward modelling by differencing the two-way acous-
tic wave equation (Baysal et al., 1983; McMechan, 1983) are computationally expensive.
However with an accurate velocity model they are very effective methods for migration and
modeling. We consider a number of alternative methods to solve the acoustic wave equation
in the wavenumber domain.

Pseudospectral Methods

Peeudospectral methods are numerically efficient methods to solve the full two-way acoustic
wave equation. They compute the spacial Laplacian exactly by using a Fourier transform
and ag a result they allow larger spactial sampling rates. The gymbols F_ s and JQ

are used to denote the forward and inverse Fourier transforms with resgpect the spactial an(g:ol

wavenumber variables, respectively. The acoustic constant-density variable-velocity wave

equation is
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where U (¢, ) is the amplitude of the wave at the point (¢, &), = is the lateral coordinate, =
ig the depth coordinate, ¢ is the time coordinate, 82U/8t2 is, for example, the second-order
partial derivative of the wavefield with regpect to the time coordinate, and v, is the speed
of propagation. Assume # € R? and t € R. The pseudospectral time-marching algorithm is
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where the superscripts n refers to the approximation at timestep n. The Fourier transform
ig used to calculate the Laplacian and a second-order finite-difference operator ig used to
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calculate the time derivative. A higher-order finite-difference approximation for the second-
time derivative of U ig unconditionally unstable (Cohen, 2001). Alternatively, the modified
equation approach (Cohen, 2001) can be used to calculate the time derivative more precisely.
The Taylor series expangion of the second-order time derivative is
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Substituting equation (3) into the gcalar wave equation gives the fourth-order time approx-
imation. If this procedure is iterated, then formally (Etgen, 1989; Dablain, 1986),

where AU refers to the 2-dimensional Laplacian of the function U and A2l is the bihar-
monic or the Laplacian applied twice to I7. Taking the Fourier transform of both sides of
equation (4) with respect to the spatial coordinates gives
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Split-Step Time Stepping

Equation (5) is a dispersion free method of solving the acoustic wave equation and for con-
gtant velocity is an exact solution. However it is expensive because a fagt Fourier transform
cannot be used to calculated the inverse Hourier-like transform. A Taylor geries can be used
to approximate the variable velocity cosine operator about the reference velocity vg. If a
Taylor serieg expansion ig used about vg = 0 then the higher-order in time pseudospectral
methods i derived. The power series expancion about the velocity vg with the variation
Sv = v(w) — vy for the function cos(27v(T)|E|At) is

cos(2ru(B)|k|At) = cos(2rupes|k|dt)
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where H.Q.T. denotes higher order terms. Substituting the Taylor series expansion (8) into
equation (5) gives the second-order splitstep correction. For large velocity variations du,

the gplit-step correction can become inaccurate and unstable. The timestep must satisfy
ot < 5m/\/§Vmam due to aliasing considerations.

Numerical Examples

We compare pseudospectral methods to gplit-step PSTS methods by looking at some snap-
shots of a forward propagated wavelet, injected at the center of the model, through a portion
of the BP data set in Figure 1(e). The BP data set contains a rigorous saltdome embedded
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Figure 1: (a) Second-order pseudo-spectral method. (b) Forth-order pseudo-spectral
method. (c) First order split-step PSTS with one window. (d) Second order split-step
PSTS with one window. (e) A section of the BP data set showing the rigours salt dome.



algorithm Relative time | time step (ms) | grid spacing | number of F'T
peeudo 2nd order 0.8 1.2 12.5 3
pseudo 4th order 1.0 1.5 12.5 3
splitstep 1st order 0.9 1.5 12.5 3
splitgtep 2nd order 1.3 1.5 12.5 4

Table 1: Relative computation time and timestep size used to make Figure 1

in a background sediment whose velocity smoothly increases with depth. Figure 1(a) and
(b) ig the gnapshot using second-order pseudogpectral method derived in equation (2). The
lower-order method is computationally efficient but containg unacceptable dispersion while
there is no observable digpersion in the higher order implementation. Figure 1(c) is the first
order gplit-step correction. The snapshot is not dispersive but there are large kinematic
errors due to the low order of the approximation. Figure 1(d) is the second order split-step
correction. The kinematics are much better than in Figure 1(c) but there is more dispersion
than the fourth-order pseudospectral method.

Conclusion

We presented a new method to numerically solve the acoustic wave equation. [t is similar to
higher-order in time psgeudospectral methods baged on the modified equation approach or
the Lax-Wendroff method. This approximation scheme can be uged for acoustic modeling
or reverse time migration. If there ig a small variation in the velocity off a reference velocity
then the method is superior to higher-order pseudospectral methods.
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