How to Log Core (With Examples from the Williston Basin of
Southeast Saskatchewan)
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In the past couple of decades, geologists have become increasingly inclined to depend on
geophysical well logs for their subsurface information, consequently core examination
techniques are becoming a lost art. In fact, many geologists become uncomfortable when
confronted with the possibility of having to look at cores, and core studies are being assigned
more and more to a rapidly diminishing group of core-orientated consulting geologists.

This presentation is intended to demonstrate the importance of the information obtained from
cores as well as outlining a systematic procedure to follow in core examination. Some of the
points made will be specific to carbonate rocks, but others are more general. Core examination
can be systematically divided into three phases, preparation, description and interpretation. An
important aspect of preparation is becoming familiar with the pitfalls of core layout, for example
misplaced cored intervals or improper order of core box layout. In the matter of description,
emphasis will be on getting the most important information from cores in order to make
acceptable interpretations of facies, facies controls on reservoir characteristics and diagenesis.
To make acceptable interpretations of the information from carbonate cores the examiner
should have a working understanding of the origins of carbonate rock components. These will
be discussed and demonstrated through the cores laid out for this presentation. Three
dimensional facies relationships determined from core studies can resolve lithostratigraphic
problems created using merely geophysical log correlations.

Lithostratigraphy (the concept of correlating similar lithologies or “log tops”) is now obsolete.
The major shortfall of Lithostratigraphy is that we cross time lines in correlation. Most
stratigraphic traps involve a shoreline or barrier to stop the migration of hydrocarbons. Seismic
appears to reflect off identical facies rather than time.

Using a simple modeling technique involving Walther’s Law, we can arrive at a first
approximation of facies relationships in three dimensions. Walther’'s Law states that facies are
stacked vertically in the same manner that they are arranged laterally. If we “dissect” the
vertical succession in the core boxes, we can predict what is occurring laterally. Computer
modeling makes this idea of facies modeling easier to accomplish because of the cross-section
and fence diagram capabilities for the third dimension. We must correlate the section to see the
changes in facies in multiple well studies. The correlations must be accomplished during the
description of each core rather than trying to correlate afterwards. The Red River core shows
marine regression with salina evaporate overstepping the inner barrier facies. Moving the
successive packages in a basinward direction explains the vertical stratigraphy that we see in
one dimension (core). The salinas become progressively more Mg-rich with precipitation of
anhydrite. The regression liberates these fluids to dolomitize everything in their way (inner
barrier and very restricted lagoon). The volume of Mg-rich fluid is related to the volume of the
salina. Papers by Harvey, Kent and Qing (2004) and Jones and Xiao, (2005) further detail how
this mechanism works (not to be confused with reflux dolomitization, since the fluids only
dolomitize their contemporaneously stratigraphic equivalents.

The Midale Beds core shows shoaling cycles in which wave energy on the shelf has winnowed

the fines to create a calcareous algal grainstone with excellent reservoir properties. This
shoaling reservoir should be exploited using horizontal wells along the linear shoal features.
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The three examples of facies modelling based on cores from the Ordovician Red River (1-33-
14-12W2M Chapleau Lake), Mississippian Midale Beds (7-7-7-11W2M Weyburn).of southeast
Saskatchewan as well as two cores from the South Heward Pool. Despite their age difference,
the first two cores show similar responses to sea level in terms of facies relationships. Both are
created in response to marine regressions in which the Williston Basin was shrinking with time.

The key concepts include the extremely shallow nature of the carbonate platform and
development of multiple barriers (Lake, 2007) (hence the tendency to exposure of inner and
outer barrier and resulting tendency to karsting of these features during sea level drops).
James and Bourque (1992) outline the principal bioligical components of the outer barrier/reef
environment through time. The end of Devonian mass extinction of colonial corals makes it
difficult to recognize the outer barrier during Mississippian sedimentation.

It is critical to realize that the individual facies in the sedimentary record do not span the entire
basin, but were deposited contemporaneously with all the other facies present. You will have
great difficulty in discovering new strat traps if you ignore this concept. High resolution satellite
imagery of the modern Exuma Platform (Harris, 2010) shows that water depth is critical for
winnowing and wave movement of sediment as well as facies distribution of the shoaling
events. There must be a critical depth for wave activity to winnow the shoals which cross the
platform. An ancient example of shoaling is observed in the 7-7-7-11W2M Midale core. The
core contains both in situ calcareous algae facies wackestone non-reservoir which grades to
algal grainstone reservoir. Mapping the trend of the shoaling features makes it easier to
horizontally exploit the hydrocarbon potential of this high perm rock. The rock record indicates
that oolites, calcareous algae and crinoids were all capable of winnowing and transport as shoal
facies.
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Core Description and photos for the 1-33-14-12W2M Chapleau Lake (Red River Formation). The sequence represents
a marine regression which can be “dissected” to apply Walther's Law and interpret facies in a two dimensional
model.
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Core Description and Photos of the 7-7-7-11W2M Midale (Midale Beds) showing shoaling calcareous algae facies
(heavily oil-stained) immediately above the Frobisher Evaporite. The Midale Beds represent a marine regressive
sequence.
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