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Summary  

Volumetric attributes computed from 3D seismic data are powerful tools in the prediction of fractures and 

other stratigraphic features.  Geologic structures often exhibit curvature of different wavelengths. Curvature 

images having different wavelengths provide different perspectives of the same geology.  Tight (short-

wavelength) curvature often delineates details within intense, highly localized fracture systems.  Broad 

(long wavelength) curvature often enhances subtle flexures on the scale of 100-200 traces that are difficult 

to see in conventional seismic, but are often correlated to fracture zones that are below seismic resolution, 

as well as to collapse features and diagenetic alterations that result in broader bowls.  Such multi-spectral 

volumetric estimates of curvature are very useful for seismic interpreters and we depict a number of 

example demonstrating such applications. 

 

Introduction 

Computation of volumetric curvature attributes is a significant advancement in the field of attributes.  Initial 

curvature applications were limited to picked 3D seismic horizons. In addition to delineating faults 

(Sigismundi and Soldo) and subtle carbonate buildups (Hart, 2003), horizon-based curvature has been 

correlated to   open fractures measured on outcrops (Lisle, 1994) and to production data (Hart et al., 2002).  

Horizon-based curvature is limited not only by the interpreter’s ability to pick, but also the existence of 

horizons of interest at the appropriate level in 3D seismic data volumes.  Horizon picking can be a 

challenging task in datasets contaminated with noise and where rock interfaces do not exhibit a consistent 

impedance contrast amenable to human interpretation.  To address this issue, Al-Dossary and Marfurt 

(2006) generated volumetric estimates of curvature generated from volumetric estimates of reflector dip and 

azimuth. Such reflector dip and azimuth estimates can be calculated using a complex trace analysis (Barnes, 

2000), a gradient-structure tensor, discrete semblance-based searches (Marfurt 2006), or plane-wave 

destructor techniques (Fomel, 2008). Computing derivatives of the volumetric reflector dip components 

provides a full 3D volume of curvature values.  There are many curvature measures that can be computed, 

with several authors finding a good correlation between dip curvature (in the Austin chalk), strike curvature 

(Hart et al., 2002), and Gaussian curvature (Lisle, 1994) to open fractures. However, in general curvature is 
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an excellent measure of paleo deformation. With an appropriate tectonic deformation model, a good 

structural geologist can predict where fractures were formed. However, since their formation, such fractures 

may have been cemented (Rich, 2008), filled with overlying sediments (Nissen, 2006) or diagenetically 

altered (Nissen et al., 2007). Furthermore, the present-day direction of minimum horizontal stress may have 

rotated from the direction at the time of deformation, such that previously open fractures are now closed, 

while previously closed fractures may now be open. For this reason, prediction of open fractures requires 

not only images of faults and flexures provided by coherence and curvature coupled with an appropriate 

model of deformation, but also measures of present day stress provided by breakouts seen in image lots and 

seismic anisotropy measures. 

 

Many workers will prefer using maximum and minimum curvature (e.g. Sigismundi and Soldo, 2003; Klein 

et al., 2008), while others (including the authors) have preferred using the most-positive and most-negative 

curvatures. In this paper, we propose simply using the principal curvatures, k1 and k2, which we describe 

below. In addition to faults and fractures, stratigraphic features such as levees and bars and diagenetic 

features such as karst collapse and hydrothermally altered dolomites also appear to be well-defined on 

curvature displays. Channels appear when differential compaction has taken place. 

 

A review of curvature definitions 

Sigismondi and Soldo (2003) provide an easy-to-understand definition of curvature of a 2D surface: 
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where R is the radius of curvature and z(x) is the elevation of a 2D horizon. 2D curvature is defined as the 

change in the radius of curvature, and hence of the angle of the normal with the vertical, φ=tan
-1

(z/x). We 

raise two pitfalls for those wishing to correlate equation 1 to curvature definitions found in 3D solid 

geometry references. First, geoscientists, petroleum engineers and mining engineers are unique in that they 

point the positive z or t axis down, rather than up, like the rest of the world. Thus anticlinal features will 

have a positive value of 2D curvature and synclinal features will have a negative value of 2D curvature. 

Second, most of us learned in calculus that the curvature of a function z(x) is simply 
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Sigismondi and Sold (2003) show that the peak values of equation 2 will occur at the crest of a folded 2D 

image, while the peak values of equation 1 will occur at the position of tightest curvature having a positive 

value. 

In 3D, we encounter somewhat more difficult to visualize formulae. We use Roberts (2001) notation and 

assume we fit a picked horizon with a quadratic surface of the form: 

z(x,y)=ax
2
+cxy+by

2
+dx+ey+f .        (3) 

Roberts (2001) then goes on to define the mean curvature, kmean, Gaussian curvature, kGauss, and principal 

curvatures, k1 and k2: 
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k1= kmean + ( kmean
2
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k2= kmean - ( kmean
2
- kGauss)
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  ,   (7) 

 

Note that k1 is a signed value that is always greater than or equal to k2. However, most references on solid 

geometry define the maximum curvature as the first eigenvalue  of a Hessian matrix equation defining the 

quadratic surface (e.g. Rich, 2008). Recall that in principal component analysis, the eigenvalue defines the 

unsigned magnitude of the deformation, while the eigenvector defines its sign and shape.  For this reason, 

Roberts (2001) uses the classical definition of the maximum and minimum curvatures, kmax and kmin 
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While these formulae are a 3D generalization of equation 1, it causes considerable confusion for those of us 

who come from a geology vs. mathematics background. First, the maximum curvature will not always have 

a positive value. If we have an elongated synclinal bowl, the maximum curvature will actually be the 

curvature of the shortest cross section, while the minimum curvature will be the curvature in the strike 

direction of our basin. For this reason, several authors (including many of our publications) have favored 

using the most-positive, kpos, and most-negative curvature kneg: 

kpos = (a+b)+[ (a-b)
2
+ c
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Equations 6 and 7 correspond to equation 1 and equations 10 and 11 correspond to equation 2. For relatively 

flat dips, such as encountered in the Fort Worth Basin and Permian Basins of  Texas (Al-Dossary and 

Marfurt, 2006; Blumentritt et al., 2006) kpos≈k1 and kneg≈k2. However, in highly deformed areas such as the 

deeper Chicontepec Basin of Mexico (Mai et al., 2009) the differences can be significant. By using the 

principal curvatures k1 and k2, we maintain the accuracy for highly deformed terraines of kmax and kmin, while 

providing the interpretational simplicity of kpos and kmin.  We also hope to eliminate the confusion on the 

definition of kmax and kmin, with several commercial software vendors implementing them not as defined by 

Roberts (2001) and the mathematical literature, but rather as we have defined k1 and k2. 

 

Multi-spectral volumetric estimation of curvature 

 

Multispectral curvature estimates introduced by Bergbauer et al. (2003) and extended to volumetric 

calculations by Al Dossary and Marfurt (2006) can yield both long and short wavelength curvature images, 

allowing an interpreter to enhance geologic features having different scales.  Tight (short-wavelength) 

curvature often delineates details within intense, highly localized fracture systems.  Broad (long 

wavelength) curvature often enhances subtle flexures on the scale of 100-200 traces that are difficult to see 

in conventional seismic, but are often correlated to fracture zones that are below seismic resolution, as well 

as to collapse features and diagenetic alterations that result in broader bowls.  We describe some 

applications of multi-spectral volumetric estimates of curvature in Chopra and Marfurt (2007). 
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Examples 

Appearance of folds and faults 

 

Figure 1 shows corresponding horizon slices through the maximum curvature, kmax, and the principal 

curvature k1, defined by equations 6 and 7. Note that the principal curvature is much more continuous than 

the maximum curvature. For this reason, many authors favor these displays when mapping stratigraphic 

features (e.g. Chopra and Marfurt, 2008)  as well as subtle faults and fractures in the presence of gentle dip 

(e.g. Sullivan et al., 2006; Nissen et al., 2007). However, in areas of folding in the presence of significant 

dip, the crest and trough of a fold defined as the highest and lowest points on a vertical section no longer 

correspond to the locations of the tightest folding. For this reason, we propose using the principal 

curvatures, k1 and k2. 

 

Appearance of fractures 

 

In Figure 2 we show an inline and a crossline from a 3D seismic volume from Alberta.  This data volume 

was used for the study of fractures at the level indicated with the blue vertical arrow.  The fractures in the 

indicated formation manifest on the seismic in the form of broken down reflections.  Consequently, the 

coherence display (Figure 3a) shows low coherence in this zone on the time slice. The long-wavelength 

most-positive curvature (Figure 3b) indicates the main reflection trends in the form of red lineaments.  This 

pattern is interspersed with blue broken trends which are seen very clearly on the long-wavelength most-

negative curvature display in Figure 3c. The short-wavelength version of the two curvature displays as seen 

in Figures 3c and e show these lineaments in a lot more detail as would be expected for fractured zones. 

 

It is always a good idea to calibrate the interpretation on curvature displays with log data if possible.  One 

promising way is to interpret the lineaments in a fractured zone and then transform them into a rose 

diagram.  Such rose diagrams can then be compared with similar rose diagrams that are obtained from 

image well logs to gain confidence in the seismic-to-well calibration. Once a favorable match is obtained, 

the interpretation of fault/fracture orientations and the thicknesses over which they extend can be used with 

greater confidence for more quantitative reservoir analysis.  Needless to mention such calibrations need to 

be carried out in localized areas around the wells for accurate comparisons. 

 

Figure 4 shows how the generation of rose diagrams from the long-wavelength and the short-wavelength 

displays.  Notice the rose diagram generated from the short-wavelength curvature display leads to a more 

robust display, than the sparse lineament seen on the long-wavelength display. 

 

Appearance of incised channels 

 

In Figure 5 we show a comparison of coherence with the long-wavelength and short-wavelength versions of 

the k1 and k2 curvature.  Notice a meandering channel seen on the coherence display (Figure 5a), which has 

its levees seen clearly at some points but not so well defined at others (yellow arrows).  In Figure 5b 

showing the long-wavelength version of the k1 curvature, we see some of the levees of the channel 

developed as indicated by the yellow arrows.  The axis or the thalweg of the channel is seen very clearly on 

the long-wavelength version of the k2 curvature in Figure 5c. As expected, enhanced resolution in terms of 
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definition of the channel is seen on the short-wavelength version of both the k1 and k2 curvature as seen in 

Figure 5d and e. 

 

Differential compaction 

 

Not all channels result in negative curvature anomalies. The feature shown in Figure 6 clearly appears to be 

a channel on the coherence image, but appears as a positive curvature anomaly along the channel axis. Such 

an anomaly is due to differential compaction. In this case, the channel axis is filled with sand and the matrix 

with shale. Over geologic time, the shale has compacted more than the sand-filled channel, resulting in a 

local high. Such anomalies are common in the North Sea and other parts of the world where sufficient time 

has passed to produce differential compaction. 

 

Conclusions 

 

Volumetric curvature is a well-established interpretational tool that allows us to image subtle faults, folds, 

incised channels, differential compaction, and a wide range of other stratigraphic features. The maximum 

and minimum curvatures define the eigenvalues of a quadratic surface. By definition (and based on 

eigenstructure analysis), the maximum curvature is defined as the principal curvature that has the larger 

absolute. However, we find that the principal curvatures k1 and k2, where k1≥k2, provide the simplicity of 

interpretation seen in kpos and kneg, but retain the robustness of kmax and kmin in the presence of steep dip. 

 

Multispectral volumetric curvature attributes are valuable for prediction of fracture lineaments in deformed 

strata. Several applications of volume curvature have been completed in different geological settings, which 

are found to be useful for different stratigraphic features, ranging from imaging of channel boundaries, 

small scale faults to highly fractured zones. 

 

Acknowledgements 

We wish to thank Arcis Corporation for permission to publish this work. 

 

References 

 

Al-Dossary, S., and K. J. Marfurt, 2005, 3-D volumetric multispectral estimates of reflector curvature and rotation: Geophysics, 71, P41-P51. 

Barnes, A. E., 2000a, Weighted average seismic attributes: Geophysics, 65, 275–285. 

 

Bergbauer, S., T. Mukerji, and P. Hennings, 2003, Improving curvature analyses of deformed horizons using scale-dependent filtering 

techniques: AAPG Bulletin, 87, 1255-1272. 

 

Chopra, S., and K. J. Marfurt, 2007, Volumetric curvature attributes for fault/fracture characterization: First Break, 25, 35-46. 

 

Chopra, S., and K. J. Marfurt, 2008, Emerging and future trends in seismic attributes: The Leading Edge, 27, 298-318. 

 

Blumentritt, C., K. J. Marfurt, and E. C. Sullivan, 2006, Volume-based curvature computations illuminate fracture orientations, Lower-Mid 

Paleozoic, Central Basin Platform, West Texas: Geophysics, 71, B159-B166. 

 

Fomel, S., 2008, Predictive painting of 3D seismic volumes: 77th Annual International Meeting of the SEG, Expanded Abstracts, 864-868. 

 

Hart, B.S., R. Pearson, R. Pearson, and G. C. Rawling, 2002, 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in 

tight-gas reservoirs: The Leading Edge, 21, 28-35. 

Klein, P., L. Richard, and H. James, 2008, 3D curvature attributes: a new approach for seismic interpretation: First Break, 26, 105-111. 

  



 

  
Recovery – 2011 CSPG CSEG CWLS Convention 6 

Lisle, R. J., 1994, Detection of zones of abnormal strains in structures using Gaussian curvature analysis: AAPG Bulletin, 78, 1811-1819. 

Marfurt, K. J., 2006: Robust estimates of reflector dip and azimuth: Geophysics, 71, P29-P40.  

Mai, H., K. J. Marfurt, and S. Chávez-Pérez , 2009 Coherence and volumetric curvatures and their spatial relationship to faults and folds, an 

example from Chicontepec basin, Mexico: 78th Annual International Meeting of the SEG, Expanded Abstracts,xx-yy.  

 

Nissen, S. E., Carr, T. R., Marfurt, K. J., and Sullivan, E. C,, 2007, Using 3-D seismic volumetric curvature attributes to identify fracture trends 

in a depleted Mississippian carbonate reservoir: Implications for assessing candidates for CO2 sequestration, in M. Grobe, J. Pashin, and R. 

Dodge, eds., Carbon Dioxide Sequestration in Geological Media--State of the Art: Special Publication, American Assoc. of Petroleum 

Geologists. 

 

Rich, J., 2008, Expanding the applicability of curvature attributes through clarification of  ambiguities in derivation and terminology: 77th 

Annual International Meeting of the SEG, 884-887. 

Roberts, A., 2001, Curvature attributes and their application to 3D interpreted horizons. First Break, 19, 85-99. 

Sigismondi, E.M., and C. J. Soldo, 2003, Curvature attributes and seismic interpretation: Case studies from Argentina basins: The Leading 

Edge, 22, 1122-1126. 

Sullivan, E. C., K. J. Marfurt, A. Lacazette, and M. Ammerman,  2006, Application of New Seismic Attributes to Collapse Chimneys in the Fort 

Worth Basin: Geophysics, 71, B111-B119. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1: Vertical section through a faulted volume. Blue circles indicate the synclinal features while red circle indicates anticlinal 

feature defining a downthrown graben. Horizon slices through volumes of (a) maximum curvature, kmax, and (b) most-positive 

curvature. Many workers like using maximum curvature since they can easily visualize anomalies that correspond to up-thrown 

and down-thrown faulting, straddling the fault discontinuity.  
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Figure 2:  An inline and a crossline from a 3D seismic data volume from Alberta.  The vertical blue arrows indicate the fractured 

zone on the seismic section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Zoom of chair-displays where the vertical display is a portion of  a crossline through the original 3D seismic amplitude 

volume while the horizontal displays are time slices through (a) coherence (b) most-positive (long-wavelength) (c) most-positive 

(short-wavelength), (d) most-negative (long-wavelength) and (e) most-negative (short-wavelength) attribute volumes.  
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Figure 4: A time slice through the most-positive curvature (a) long-wavelength volume and (b) short-wavelength volume, with 

the individual lineaments interpreted in black.  The rose diagram prepared for these set of lineaments in black are shown to the 

right of each figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Stratal slices showing an incised channel system through (a) coherence (b) k1 (c) k2 (long-wavelength) (d) k1 (short-

wavelength) (e) k2 (short-wavelength) and (f) co-rendered coherence and k2 (long-wavelength) volumes. The definition detail on 

the long-wavelength curvature attribute displays is higher and focused than similar lineaments on the coherence display.  
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Figure 6: Not all incised valleys result in negative curvature anomalies. In this example from Alberta, Canada, we see positive 

features associated with the channel axes indicating that the channel is filled with sand and the surrounding matrix with a more 

easily compactable shale. (a) coherence (b) long-wavelength k1 (c) long-wavelength k2 (d) co-rendered coherence and long-

wavelength k1 volumes.  

 

 

 

 

 

 

 

 

 

 

 


