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Summary  

Waveform inverse problems are mathematically ill-posed and, therefore, regularization methods are 

required to obtain stable and unique solutions. The Total Variation (TV) regularization method is used to 

resolve sharp interfaces obtaining solutions where edges and discontinuities are preserved. TV 

regularization accomplishes these goals by imposing sparsity on the gradient of the model parameters. Full 

waveform inversion is carried out using the L-BFGS method in the frequency domain by selecting a limited 

number of frequencies from low to higher frequency. Tests with the Marmousi data set are utilized to 

highlight our numerical results.  

Introduction 

Full waveform inversion (FWI) based on the least-squares principle is in general mathematically ill-posed 

and, therefore, regularization methods are required to obtain unique and stable solutions. Unlike quadratic 

regularization methods that tend to produce models where discontinuities are blurred or smoothed, non-

quadratic regularization methods can provide high-resolution images.  In this paper a Total variation (TV) 

regularization method (Rudin et al., 1992) is considered to impose desired features on the estimated seismic 

image.  The TV regularization method is a good candidate if the physical quantity to estimate has sharp 

edge boundaries and is blocky. This regularization method tries to reconstruct continuous profiles of the 

model parameter by enforcing a sparseness constraint on its gradient, thereby, preserving its edges and 

discontinuities while suppressing artifacts due to noise.  

 

FWI is carried out in a limited set of frequencies. The inversion of the limited set of frequencies can be 

carried out in a sequential approach starting from low to higher frequency data or simultaneously (Pratt et 

al., 1998; Sirgue and Pratt, 2004; Hu et al., 2009; Virieux and Operto, 2009). The forward problem for FWI 

is computed by solving the full wave-equation using the finite difference method.  FWI is a local gradient-

based optimization problem requiring the gradient of the objective function, which can be minimized using 

the adjoint-state method (Plessix, 2006).  To solve the actual inversion process, the Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization method was employed. Better results and an 

accelerated convergence rate can be obtained when the gradient of the cost function is scaled by the 

diagonal of Hessian matrix, or pseudo-Hessian matrix (Shin et al, 2001a).  

Theory and/or Method 

Full waveform inversion requires the minimization of the objective function defined by l2 norm of the 

residual between the observed data d
obs

 and the model data d
cal 
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where m is the slowness (inverse of velocity) model parameter we seek to retrieve,  is the angular 

frequency, and ns and nr represent the number of sources and receivers respectively.  The described inverse 

problem is ill-posed and requires regularization to stabilize the solution.  The regularized cost function is 

formulated as  

         
 2 

The first term is the l2 misfit norm, which represents the error between the observations and modeled data. 

The second term represents the regularization term, which, in this case, is the l1 norm of the gradient of 

slowness model. The positive parameter  is the regularization or trade-off parameter that determines the 

relative balance of the two terms in expression (2). Note that mn-1 is the model parameter of the previous 

iteration. The minimization of equation (2) leads to solutions where  is sparse. By promoting sparsity 

on , the slowness model becomes blocky, therefore, preserving edges.  

However, the l1 norm is non-differentiable at 0.  To avoid this singularity at 0, our numerical 

implementation uses the following expression to approximate the l1 norm of the gradient via the following 

differentiable functional  
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The parameter α ensures the stability of the solution while also controlling its smoothness.  The gradient of 

equation (3) with respect to m is given by 

        
   4 

where,

 

 is the gradient of  the total variation regularization, second term of Eqn [3].  

 

In this paper, the full waveform inversion is carried out using the L-BFGS method.  The forward problem is 

solved using a direct solver based on an LU decomposition of the finite-difference Helmholtz operator into 

a lower and upper LU triangular decomposition (PARDISO) (Schenk and Gartner, 2004; Schenk et al., 

2007, 2008).  This operator is quite sparse and, therefore, storable in memory. The main advantage of this 

method is that once the decomposition is performed and available for a given angular frequency ω and 

background velocity, the forward problem is efficiently solved for multiple sources using the forward and 

backward substitutions.  The same procedure is applied for back-propagated wavefield.  The gradient of the 

cost function is computed by zero-lag correlation between the forward-propagated wavefield and the back-

propagated residual wavefield. Computationally, both wavefields are computed by solving two forward 

problems.  

Examples 

For full waveform inversion, the Marmousi velocity model in Figure 1 [a] is used to generate the data. The 

subsequently smoothed velocity mode is shown in Figure 1 [b]. The latter is also the starting model of the 

process. To ensure convergence of the optimization, the starting model has been chosen close enough to the 

original model by smoothing the original velocity model with Hanning window. The inversion is then 

carried out by employing the Total variation regularization method and without the regularization method. 

The data set consist of 96 shots and 192 receivers. A small amount of noise, signal to noise ratio (SNR)=10, 

was added to synthetic data in the time domain data. In the frequency domain, three discrete frequencies 

were selected (3.5, 7.6, 12.5 Hz) for the inversion.  
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Figure 1 Full waveform inversion with and without Total Variation regularization. (a) True Marmousi velocity model. (b) 

Smoothed velocity model used as a starting model.  FWI without and with regularization method (c) and (d) for frequency 12.5 

Hz.  

The full waveform inversion in frequency domain is carried out sequentially from low to high frequency. 

For each frequency, the FWI runs for 30 iterations. Figure 1 [c] is the reconstructed velocity model for 12.5 

Hz without using regularization and Figure 1 [d] is the reconstructed velocity model for 12.5 Hz using TV 

regularization. These two numerical inversions show that the L-BFGS algorithm reproduces results that are 

comparable to the original velocity model. In both cases, the upper most part of the velocity model, the low 

velocity region, was reconstructed with high degree of accuracy. As expected, the lower or deeper part of 

the Marmousi model lacks resolution and it is improperly scaled by unregularized inversion.  Edges in the 

deeper part of the model are, however, improved by making use of the TV regularization. Figure 2 shows 

the vertical velocity profiles extracted at lateral position 5.2km. This plot confirms that the edges of the 

velocity model are better resolved with the TV regularization. 

The parameter  introduced in the regularization function controls the behavior of the nonlinearity of the 

model, thereby controlling the sharp edges, discontinuities and the smoothness of the model.  One of the 

difficulties in the numerical simulation is finding the best combination of µ and . There is no successful 

heuristic way to determine these values. After several trails these values were adjusted to vary through the 

iterations in such a way that an appropriate weights are given for each frequencies and iteration. Finding 

optimal trade-off parameters is a major effort of our research. 
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Figure 2. Vertical velocity profile extracted at 5.2km. Red is the true velocity profile, blue is the smooth velocity profile used as a 

staring model, green is the recovered velocity profile using the unregularized inversion and black is the reconstructed velocity 

profile using TV. 

Conclusions 

We presented a non-linear sequential frequency domain 2D full waveform inversion method in a constant 

density medium that uses Total variation regularization to constrain seismic velocities. The proposed 

method uses TV in conjunction with the L-BFGS optimization method to retrieve a model of the subsurface 

with preserved edges and discontinuities.  Numerical results with synthetic data, using only a few 

frequencies, appear to confirm that the regularization via TV produces images of high resolution, 

particularly in the deeper part of the model.  This is because the regularization method was chosen to have 

the ability to resolve sharp edges and interfaces of the medium. The method expands the work proposed in 

the areas of imaging using TV regularization via single-scattering Born inversion to retrieve a model of the 

subsurface with preserved edges and discontinuities (Anagaw et al., 2010). 
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