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Summary  

Multi-dimensional Fourier interpolators have become the industry standard for 5D seismic volume reconstruction. 

However, room for improvement exists and a few key aspects of seismic data reconstruction do require additional 

study. The latter includes stability in the presence of coherent noise and statics, recovery conditions for extremely 

sparse data sets and computational efficiency. This presentation addresses some of the aforementioned problems by 

introducing a new technique for 5D interpolation based on multilinear algebra. Prestack seismic data is organized in a 

tensor, which is assumed to be a low rank structure when the data is properly sampled. A practical algorithm is 

presented where tensor rank reduction permits to recover the missing traces and increase the signal-to-noise-ratio of 

the seismic volume. The technique is compared to a multi-dimensional Fourier interpolator. We have obtained 

encouraging results with synthetic volumes. In particular, numerical tests indicate noticeable gains in computational 

efficiency and reconstruction fidelity for very sparse data sets.  

Introduction 

Reconstruction of prestack seismic data has been an area of intense research activity during the last decade. The 

problem of seismic data regularization is an essential part of preconditioning strategies prior to multiple suppression, 

migration and detailed amplitude versus azimuth studies. The 5D volume can be organized as a tensor that contains 

missing entries. The complete tensor is considered to be a low-rank structure with missing observations and noise 

increasing its rank. Our algorithm iteratively reconstructs the seismic volume by computing a low-rank tensor data 

approximation to the original incomplete and noisy data set. We perform a comparison between the classical 5D 

Fourier reconstruction method and proposed volume reconstruction using tensor completion. For this purpose, we use 

one particular type of tensor decomposition named High-Order Singular Value Decomposition (HOSVD) proposed 

by De Lathauwer et al. (2000a).  

The Problem 

We consider a subvolume of data in the f-x domain for fixed frequency f. The data depends on the source-receiver 

positions and by transforming the data to a nominal midpoint-offset domain grid, a tensor that depends on 4 spatial 

indices  is created. For a given monochromatic frequency we identify the data by a 4
th

-order tensor 

. The indices i, j, k, l are used to indicate x and y CMP positions and offsets in the x and y directions, 

respectively. It is clear that the tensor  contains many missing entries. It is important to stress that a typical land 

survey can lead to 4-dimensional grids with only 5-10% of the entries occupied by observations. Let’s denote the 

desired tensor by the symbol . The observations and ideal data tensor are related via , where T is the 

sampling operator and the product is in the Hadamard sense (element-wise product). Furthermore, the elements of the 

sampling operator are 0 if the bin is empty, and 1 if the bin contains an observation. Solving the tensor completion 

problem involves estimating  from .  

5D Reconstruction via iterative tensor completion 
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The HO-SVD permits to approximate a tensor by one of lower rank (De Lathauwer et al., 2000a). The decomposition 

permits to approximate a tensor  by one of lower rank  via the product of 4 unitary matrices  and a small 

core tensor  (Kolda and Bader, 2009): 

 

 

(1) 

where G,U,V,W, and Y are computed from D. The process of obtaining the decomposition from the data is the tensor 

rank reduction operator that will be written as   The rank-reduced tensor is obtained iteratively via an 

algorithm called High-Order Orthogonal Iteration (HOOI)  (De Lathauwer et al., 2000b). We assume that in the ideal 

case, noise-free fully sampled data, the tensor is a low rank structure that can be represented via a small core tensor. 

Noise and missing data will increase the size of the core tensor that is required to represent the observations.  

Therefore, we propose to complete the data via the following iterative algorithm 

 (2) 

The symbol  indicates iteration and  is an iteration dependent scalar that serves to diminish the influence of the 

noise in the final reconstruction. In our numerical implementation  decays exponentially starting with  and 

takes between 4 and 26 iterations to converge to the reconstructed tensor in the case of the synthetic data. This 

depends on the level of noise and sampling density. Data synthesized via the tensor decomposition are reinserted in 

the empty grid points. The grid points with observations are populated by the weighted average of observations and 

new data at a given iteration. We used the Matlab Tensor Toolbox (Bader and Kolda, 2010) for calculating the tensor 

rank reduction.  

 

5D Fourier Reconstruction via sparse inversion (FRSI)  

 

Tensor completion is compared to Fourier reconstruction.  We adopted 5D Sparse Fourier Reconstruction (Sacchi et 

al., 1998; Zwartjes and Sacchi, 2007), a technique similar to MWNI (Liu and Sacchi, 2004; Trad 2009), which also 

operates in the f-x domain. This problem reduces to estimating the Fourier coefficients of the data by minimizing the 

following objective function: 

 
(3) 

where  are the Fourier coefficients in wave-number domain of the complete data for a fixed frequency f. The 

operator  indicates the 4D inverse Fourier transform. The cost function (3) is minimized using Iterative 

Reweighted Least-squares (IRLS) following the algorithm described in Hansen (1998). It is important to stress that 

similar results can be obtained via MWNI, a method that uses a regularization term similar to the l1 norm (Liu and 

Sacchi, 2004; Trad, 2009). 

 

Comparison  

For the following example, we use synthetic 5D volumes with 3 linear events. They contain 150 time samples, and a 

grid size of . We define signal-to-noise ratio as , which was set to 1 and 100. The 

proportion of sampled traces, called sampling density, was also varied from 25 to 90%.  The relative error is 

, where  is the output volume and  is the noise-free fully sampled synthetic 

volume. The performance of both algorithms is displayed in Figures 1 and 2.  
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Figure 1: Comparison between Tensor Completion and Fourier reconstruction (FRSI) for a synthetic example with S/N = 100. 

 
Figure 2: Comparison between Tensor Completion and Fourier Reconstruction (FRSI) for a synthetic example with S/N = 1. 

Overall, the proposed tensor completion method yields smaller reconstruction errors than FRSI in addition to improving 

the run time. It is interesting to notice that when the S/N is not too high, the HOSVD achieves a considerably smaller 

error that the FRSI, even for extremely sparse surveys.  

We also applied FRSI and the tensor completion to a real data set from the Western Canadian Sedimentary Basin. The 

orthogonal survey was transformed to a nominal geometry of size  midpoints and  offsets per 

midpoint bin. Only 8% of the grid is populated with traces and our task is to estimate the remaining 92% of the traces. 

The midpoint spacing in x and y are 25m and 50m, respectively. The minimum offset is 0m and the maximum 
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1400m. The tensor reconstruction used a core tensor of size . In Figure 3 we show a common offset 

section given by the two methods. The tensor completion method had a running time of 18 minutes while FRSI 

achieved a similar result in 10 minutes. The output data from the tensor completion method seems to adjust more the 

subtle amplitude variations than the output given by FRSI. 

  

Figure 3: A small part of the real 5D volume used to test the proposed tensor completion method. Common Offset section 

reconstructed with FRSI (left) and Tensor completion (right). (a) Part of the 5D input and (b) is part of the 5D reconstructed data.  

 

Conclusions 

Our research shows that tensor analysis is a useful tool for seismic data reconstruction. Synthetic examples have 

shown that very sparse data sets can be interpolated with a high degree of accuracy. In this regard, the technique 

appears to provide results similar to multidimensional Fourier interpolation (FRSI). However, our results with real 

data tend to be smoother with FRSI because the underlying model is the classical superposition of exponentials that 

might not adapt well to subtle changes in the character of the signal. On the other hand, tensor completion is data-

driven and seems to adapt better to small variations in amplitude in the signal. It is clear that with real data, i.e. not 

knowing the true solution, it is quite difficult to assess the quality of the interpolation. This is why it is so important to 

drive our research with a combination of synthetics tests and field data experiments. 
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