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Summary 

We examine the key concepts in full waveform inversion (FWI) and relate them to processes familiar to 

practicing geophysicists.  For clarity, we present the central theoretical result behind FWI as a mathematical 

theorem stating that a linear update to a migration velocity model is proportional to a reverse-time migration 

of the data residual (the difference between the actual data and data predicted by the model) where the 

proportionality factor must be estimated.  We argue that in many cases this factor will be complex-valued 

and frequency dependent, or in the time domain, it will be a convolutional wavelet.  We find an analogy 

between estimation of the velocity update from the migrated section and the common process of impedance 

inversion, and we suggest that FWI can be viewed as a practical cycle of data modelling, migration of the 

data residual, and calibration of this migration to deduce the velocity update.  We present an extended 

example using the Marmousi model in which we use wave-equation migration of the data residual and we 

calibrate the migration by matching it to the velocity residual (the difference between actual velocity and 

migration velocity) at a well.  We find that our inversion approach returns a very finely-detailed velocity 

model. 

Introduction 

Lailly (1983) and Tarantola (1984) introduced full waveform inversion (FWI) to reflection seismology.  

As originally proposed, the procedure requires a sequence of pre-stack migrations where each migration is 

based on a velocity model updated by the result of the previous migration.  More recently (e.g. Virieux and 

Operto 2009), FWI is formulated as a generalized inverse problem that requires only a forward modelling 

code, it's adjoint, and an iterative numerical-solver (usually a gradient method).  While this approach is 

more general and efficient, lost is the perspective of FWI as a sequence of migrations and we return to that 

perspective here.  We suggest that FWI can be viewed as an iterative cycle involving forward modelling, 

pre-stack migration, impedance inversion, and velocity model updating in each iteration. 

Theory and Method 

The fundamental result that enables FWI was first derived by Lailly (1983) and Tarantola (1984) and 

many others since then.  Stated informally, the result says that, given a smooth migration velocity model, 

 0 ,v x z , then a linearized update to the velocity model is given by 
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where   is a scalar constant, the hat (^) over a variable indicates its temporal Fourier transform, 
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data residual for source s back propagated to all  ,x z ,  is complex conjugation, and   is temporal 

frequency.  By data residual, we mean the difference between the actual data and synthetic data created by 

forward modelling through the velocity model  0 ,v x z .  The term on the right-hand side of equation 1 is 

without the   frequency-domain expression for a reverse-time migration in which both fields have been 

time-differentiated.  In fact, equation 1 is often written as a time-domain expression given by 
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where T is the record length.  If   can be determined, then a new velocity model is estimated as 

      1 0 1, , ,v x z v x z v x z  . (3) 

Given this basic result, the procedure is then iterated as shown in Figure 1.  If the initial velocity model is 

sufficiently close to the true model, then convergence is possible and a solution to the nonlinear seismic 

inverse problem is obtained by a series of linearized steps. 

 
Figure 1: The cycle of acoustic FWI (full waveform inversion).  The cycle has external inputs at a) the initial velocity 

model, and b) the actual (or recorded) seismic data.  The cycle counter k is initially 1.  Step 1) Velocity model 1kv   is 

used to predict synthetic seismic data matching the acquisition geometry.  Step 2) The data residual (real data - 
synthetic) is pre-stack migrated and stacked.  Step 3) The pre-stack migration is "calibrated" to estimate a velocity 

perturbation kv .  Step 4) The velocity model is updated by adding the perturbation to 1kv   to estimate kv . 

The RTM part of equation 2 actually emerges in theory as the negative of the gradient of the data misfit 

function (the measure of the difference between the actual data and modelled data).  In a gradient descent 

inversion iteration, the model is updated by stepping in the direction of the negative gradient (e.g. steepest 

descent) and   is the step size.  The RTM in equation 2 is a conventional prestack RTM with two slight 

differences.  First, the data residual is migrated rather than the data itself, and second, both the modelled 

shot field and the back propagated data residual have been time differentiated.  This double time 

differentiation accounts for the factor for frequency squared in equation 1.  The reason for the particular 

form is that, in theory, it makes the estimation of the velocity perturbation a simple scaling operation as in 

equation 1.  However, this theory assumes the source waveform is known.  If not, then   becomes 

frequency dependent, which in the time domain necessitates a convolution.  Once   is frequency 

dependent, then the 2  factor can be absorbed into it and we then restate equation 2 as 
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where the RTM is now a standard algorithm (no time differentiation) and  d z  is some kind of a 

deconvolution filter whose purpose is to convert the migrated section into a velocity estimate.   

We have taken considerable liberties with equation 4 in assuming that  d z  will only depend upon 

depth.  In sufficiently simple media this is easily justified but in general it is more complex.  We do this to 

draw a connection with the standard process of matching migrated data to wells in order to estimate 

impedance (Lindseth 1979).  In a constant density setting, there is no difference between an impedance 

estimation and a velocity estimation so this leads to our conjectured generalization of FWI.  Explicitly, we 

conjecture that the RTM in equation 4, and hence the migration algorithm of step 2 of Figure 1, can be 

replaced with any prestack depth migration and that  d z  can be estimated by a suitable matching to well 

control and this constitutes step 3 of Figure 1.  Matching migrated seismic sections to well control is a 

common step in interpretation, and it is intended to deal with residual wavelet amplitude and phase that 

remain after data processing.  The intent of equation 4 is to convert the prestack migration of the data 

residual into a velocity perturbation.  At a point of well control, the velocity residual, e.g. the difference 

between the true velocity and the migration velocity is known.  So we propose to match the migrated data 

residual at the well to the velocity residual. 

Examples 

To test our conjectures, using the Marmousi velocity model (Figure 2a),we created 40 shot records using 

finite-difference modelling (second order in time and space), with sources at the surface beginning at 4000 

m, incrementing by 100m, and extending to 7900m.  Each source record has a split-spread receiver pattern 

with offsets ranging from -2000m to +2000m at increments of 8.333m.  This constitutes our "real" data.  As 

a migration algorithm, we used a pre-stack PSPI (phase-shift-plus-interpolation) algorithm (Gazdag and 

Squazerro 1984) implemented by us.  PSPI is a space-frequency algorithm which means that each frequency 

is migrated independently.  This has proven to be a very useful property because it facilitates an inversion 

process that is progressive in frequency by which we mean the low frequencies are inverted first and higher 

frequencies are inverted using the model as updated by the lower frequencies (as done by Pratt 1999).  

Finally, we assumed a well at coordinate 6000m where the exact velocity is known over the depth interval 

 500,2500 m.  Our calibration at the well is a simple two step process where we determine a constant scalar 

and a constant phase rotation by least squares to match the migrated trace at the well to the velocity residual. 

In Figure 2 we show the results of a single iteration in which the migration was limited to the low 

frequency band 0-5 Hz.  Figure 2b shows the migration velocity model used and Figure 2c is the updated 

model formed by adding the scaled and phase-rotated migrated stack to the migration model.  The updated 

model will then become the migration model for the next iteration.  Figure 3 shows the calibration process 

at the well.  The migrated data residual trace at the well has amplitudes between ±5x10
-4

 while the velocity 

residual (the subtraction of the curves in panel 3b) is 6 orders of magnitude greater.  After scaling and phase 

rotation, the migrated trace is added to the migration model to produce a better approximation to the exact 

velocity (Figure 3c).  In Figure 4 we show a selection of velocity models deduced at particular iterations in a 

test where the frequency band was progressively increased.  The final velocity model is clearly an 

improvement on the initial one, but not exactly correct. 
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Fig. 4.  A selection of velocity models as updated after a partiular iteration of a 22 iteration test in which the frequency 
band was progressively increased from low to high. 

Conclusions 

We have argued that each iteration in FWI (full waveform inversion) can be viewed as a four step 

process of (i) forward modeling through the migration velocity model, (ii) migration of the data residual (iii) 

calibration of the migration by converting it to a residual velocity estimate (iv) updating of the velocity 

model by adding the calibrated migration to it.  We have conjectured that any prestack depth migration can 

be used and that the conversion to velocity can be done as an impedance inversion using well control.  We 

have supported our conjectures with a study using synthetic data from the Marmousi model. 
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Fig. 2: a) The Marmousi velocity model. b) The 
initial migration velocity model formed by 
smoothing a) with a 600m Gaussian smoother. c) 
The updated migration velocity model after 1 
iteration. 

Fig. 3: The calibration process on the first 
iteration. a) The migrated data residual trace at 
the well. b) The exacted velocity (blue) and the 
migration velocity (red), c) The exact velocity and 
the updated migration velocity at the well (red). 


