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Summary 

Seismic migration and data processing are dependent on travel time functions in the image region.  This paper 

presents a novel method of using purpose built computer hardware for general anisotropic media. The eikonal 

solver for isotropic media is extended to any general twenty-one elastic constant anisotropic media.  The 

examples used illustrate VTI media, but the methodology is applicable to any general anisotropy.  In this work 

using hardware for geophysical algorithms such as finite difference methods and ray tracing is extended to 

travel times. 

Introduction 

The eikonal equation is a non-linear partial differential equation, which has many applications in 

geophysical modeling and inversion [1, 2 and 3]. To simulate earthquake travel times computer methods 

were pioneered by Vidale [4] for an expanding grid rather than tracing rays in the isotropic inhomogeneous 

media However, the earth is not always isotropic and structures and media can be shown to be anisotropic.  

Media in which the velocity of propagation is dependent on direction is anisotropic.   

Recently hardware for isotropic travel time engines have been designed [5] for seismic applications, ray 

tracing in hardware [6], and least time fast marching methods [7].  These innovations were compared to 

multi-core and GPU computing models in [8] and found to be very competitive.  The primary hardware 

models used hardware description languages VHDL and field programmable gate arrays, FPGA’s.  These 

transformations into hardware allow for intrinsic parallel and pipeline data movements. These hardware 

devices for geophysical applications [9,11,12, and 13] are causing disruptions in the use of computer 

technology [10], so much so that orders of magnitude in performance improvement are possible if a suitable 

algorithm mapping can be found. 

Thus hardware methods can be applied to resolve ray paths, parameters, and travel times [14, 15, and 16]. 

The above work was directed to the solution of travel times in isotropic media.  In this paper, we examine 

the requirements for algorithms, and successful implementations for a general two dimensional anisotropic 

media. 

 

Theory and Method 

The partial differential form of the eikonal equation is shown in equation (1). 

(δT/δx)²  + (δT/δy)² +  (δT/δz)² = S²              (1) 

Here the solution methods in two and three dimensions for isotropic in-homogeneous media are extended to 

anisotropic media.  Using finite difference grid based isotropic algorithms; the slowness function is 

expanded to be angle dependent. 
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A seed region is created with a small area of pre-computed solution, for the remaining region is expanded 

around this area.  The edge of the region, which has known, and unknown solution grid points is called the 

active region.  In this active region some points have current solution times, which are smaller than all the 

rest.  If these points are used for the next computation a meaningful physical solution is obtained, and 

further the model parameters can have significant jumps in value.  The grid spacing is h. 

The Triangle 

For isotropic media, the use of a grid allows for a simple geometric argument for computing new times.  

This is shown in Figure 1.  The computation requires two known points to compute a third.  The Ta and Tb 

points are known, to compute Tc we allow a linear interpolation of time between points (a,b). The 

interpolation parameter is mu on the interval [0,1]. This interpolation value is added to the distance slowness 

time from the point (c) to the line x=L(a,b,mu) that computes the new time Tc.   

 

Figure 1 – Grid cell triangle geometry 

For isotropic media we assume this slowness is a constant with the cell. 

Tc = Ta + μ(Tb- Ta) +√(1+μ²)  (S*h)               (2) 

The least time to Tc is computed by taking the derivative of (2) with respect to mu and setting it to zero.  

Then we can solve for mu.  In practice, this method has limitations but can be modified to work; the 

important consideration is to bound the solution for mu to the interval [0,1]. 

 

For general anisotropic media, the slowness function is defined as angle dependent.  In the model results 

shown here we use a vertical transverse isotropic model, where the velocity (3) is a function of the angle 

theta.  The angle theta Θ is measured from the vertical axis of symmetry.  The equation for velocity is used 

and for each angle theta computed.  Once the velocity V is known the slowness is determined, with a 

vertical velocity Vv of 2200 m/s and a horizontal velocity Vh of 2900 m/s. 

V²(Θ) = Vh²(Θ) sin²(Θ) + Vv²(Θ)cos²(Θ)        (3) 

The active set of points have adjacent points which are in the initial state, because the nature of wave 

propagation, energy could be coming from any direction and to properly evaluate this least time point we 

must consider all points attached to the least time point as in the initial state.  By examination if we find a 

point attached to the least time point as un-computed then we examine all adjacent possible solutions.  In 

doing this we might have one or more solutions, it is the minimum of all possible solutions, which is needed 

to replace an initial state.  Once this new time is computed it is placed the time array, making it part of the 

active set and placing it on the sort list for further evaluation.  The data are on a 5 by 5 grid that supports the 

evaluation process in a structured way.  An FPGA can be organized to support these calculations in parallel.   

Data Examples 

To illustrate the need for these eikonal solutions examples travel time contours of a simple geological 

structure of uniform material are shown in Figure 2a, 2b, and 2c. 
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To model this geological material with a simulation we assume a horizontal velocity of 2900m/s and a 

vertical velocity of 2200m/s.  In Figure 2a the constant velocity first arrival travel time curves are shown, 

the velocity used here is isotropic and 2550m/s.  As indicated all the plot contours are circles around the 

source point located at (400, 0)m.  In Figure 2b we see the anisotropic velocity model results, and now see 

time spreading faster in the horizontal direction as expected.  To complete the examples of this solution 

technique the velocity values are reversed the vertical is now 2900m/s, the results are shown in Figure 2c.  

Notice the expansion of the travel time curves as they are perpendicular at the z=0 surface, this expansion of 

the lines of constant time is because the horizontal velocity is the slowest. 

 

       

Figure 2(a=isotropic media with constant velocity, b-anisotropic horizontal, c-anisotropic vertical) 

Hardware Description 

The hardware platform utilized was the Berkeley Emulation Engine, a third generation commercial FPGA 

based computer system commonly known as BEE3 (BeeCube).  Each BEE3 module contains four large 

Xilinx Virtex-5 LXT/SXT FPGA chips, up to 64GB DDR DRAM, and eight 10GigE interfaces for inter-

module communication. BEE3 targets a wide range of application domains, including system emulation and 

simulation acceleration of multi-processor computer systems [17, 18, and 19]. 

The proposed  system architecture of this paper comprised of one shared memory controller, and a calculate 

engine processor implementation on Xilinx FPGAs. Given hardware’s ability to process in parallel, we can 

also explore the option of multiple instantiations of the calculating engine. Figure 6 illustrates a parallel 

processing architecture across four FPGAs. With this parallelization, it will provide a significant performance 

improvement.   

 

Figure 6 – Multi-FPGA Architecture 

Future Work 
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The transformation of the eikonal algorithm into VHDL using an appropriate fixed point binary 

representation is next.  The data movement for triangle evaluation has been tested and is working.  Once a 

single triangle calculation has been demonstrated, a set of four triangle compute cells will be constructed for 

the FPGA.  This will allow for a complete row of the 5 by 5 memory data structure to be mapped into the 

hardware.   

Conclusions 

The existing isotropic hardware methods have been extended to angle dependent anisotropic materials.  

These extensions are viable for use in geophysical algorithms.  The new methods can be mapped into FPGA 

subsystems using available tools and hardware.   Further work is needed to complete these mappings, but 

the basis for memory data movement has been demonstrated and that is the critical bottleneck.  The triangle 

arithmetic processes have been reduced to the minimum by new matrix transformations.   
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