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The tight gas sandstones of the uppermost Minnes/Nikanassin Group in NW Alberta and NE British
Columbia, referred to here as the Monach Formation, are an important reservoir target (e.g. Narraway and
Chinook Ridge fields). Despite the economic potential of the high net to gross fluvial strata, relatively little
published information regarding the stratigraphic architecture, paleogeography and basin history exists.
This study addresses these deficiencies using primarily a subsurface dataset of over 3300 wells and 30 full
diameter cores supplemented with paleocurrent measurements from outcrops near Grande Cache, Alberta
(Figure 1).

Differential incision associated with the sub-Cadomin unconformity has resulted in a complex stratigraphic
architecture in which the Monach Formation thins progressively from >140 m of preserved stratigraphic
thickness in the fold and thrust belt to an erosional zero edge in the plains. To better constrain the basin
scale-stratigraphic architecture, three lithostratigraphic units within the Monach Formation as well as two in
the Beattie Peaks Formation have been identified (Figure 2). Net sandstone (<60API) maps of the
lithostratigraphic units, considering an average paleocurrent direction of (027) from outcrop, provide insight
into the paleogeography and sediment distribution (Figure 1). For example, in the southern portion of the
study area, the Lower Monach unit is dominated by laterally extensive sheet sandstone and interpreted to
have been deposited by braided rivers. The northeasterly sediment transport direction observed in the study
area is consistent with sediment transport directions of the overlying Cretaceous Cadomin and Gething
formations and suggests a similar paleogeographic setting during the Late Jurassic with tributaries flowing
into a large axial river system (Smith et al., 1984). This hypothesis cannot be unequivocally demonstrated
as only the tributary portion of the Monach Formation fluvial system is preserved due to the erosion
associated with the overlying unconformity.

Utilizing the methods of Bridge and Tye (2000), insight into channel belt dimensions and channel belt scale
(10-15 km) stratigraphic architecture is gained through quantitative prediction of channel belt dimensions
using cross-bed thicknesses from full diameter core (Figure 3). Predicted maximum channel belt
thicknesses and widths from across the basin vary from 4.1-14.9 m and 514-3005 m. These data form the
basis for interpreting channel belt scale stratigraphic architecture as reflected in both maps and cross
sections (Figure 1 and Figure 4). Figure 4 illustrates one possible interpretation of channel stacking based
on this analysis, and demonstrates reservoir compartmentalization and stratigraphic heterogeneity inherent
at the channel belt scale in the Monach Formation.
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Figure 2. Example log from well 13-03-066-12W6 Figure 3. Wireline log, core description and interpretation
demonstrating a typical log response across each of the demonstrating a typical fining upwards succession in the Monach
surfaces used to define units Formation (07-23-069-13W6, 2718 m- 2702 m). The succession is

interpreted to be a complete channel fill with associated overbank
material. Also shown are the cross-set thickness measurements
used to calculate the maximum bankfull flow depth (8.8 m) and the
channel belt width (1456 m) associated with this sandstone body.

Figure 4. (Following page) (A) 2.9 km long cross section oriented approximately perpendicular to paleoflow utilizing the first
Beattie Peaks Formation coal as a datum. The 60 APl gamma radiation line used as a sandstone cutoff is shown as a vertical line
through each gamma radiation log. Stratigraphic divisions and net to gross values in the Upper Beattie Peaks and Monach units
are shown. (B) Cross section from (A) with interpreted channel belts using width and thickness calculated in the study. (C)
Cross section from (B) with predicted channel belts between wells using measured net to gross as a guide. The legend depicts the
range of channel belt dimensions calculated for each lithostratigraphic unit and used in the cross section (Bridge and Tye, 2000).
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