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Summary 

Azimuthal AVO analysis can be split into two parts: the Amplitude Versus Offset (AVO) analysis and the 
Amplitude Versus Azimuth (AVAz) analysis.  For regularly sampled data in azimuth, the properties of 
the Fourier transform allow these problems to be treated separately.  If we calculate a Fourier transform 
of the AVAz PP reflectivity data at a particular angle of incidence, we obtain Fourier Coefficients (FCs) 
that parsimoniously describe the AVAz and anisotropy.  It is possible to attach physical significance to 
each of the FCs by assuming simple rock physics models that relate the anisotropy to the fractures.   
Assuming a single vertical fracture set, the second FC is approximately equivalent to the anisotropic 
gradient.  Other FCs convey additional independent information about the fractures.  The different FCs 
may be combined in a nonlinear fashion to estimate more fundamental fracture parameters including an 
unambiguous estimate of the symmetry axis.  The FCs are calculated using a limited range of offsets or 
angles, which places less demands on the data acquisition.  This may be advantageous for land 3D 
data sets, where near offsets are particularly under sampled.   

Introduction 

Ikelle (1996) and then Sayers and Dean (2001) demonstrated that it is possible to express the 

azimuthal AVO reflectivity response in terms of a Fourier series as a function of azimuth .  Due to the 
properties of the Fourier transform, these Fourier coefficients (F.C.'s) represent independent 
information and may be used in combination or individually to make inferences about the anisotropy 
and fractures.  This work shows how to interpret these F.C.'s in terms of Linear Slip Deformation (LSD) 
theory (Schoenberg, 1980).  Assuming HTI media, with aligned symmetry axes, the physical 
significance of the individual F.C.'s are described.  In particular, the 2nd F.C. corresponds to a biased 
estimate of the anisotropic gradient.  This can be calculated using just one offset or angle of incidence 
and gives similar results to that obtained by the near offset Rüger equation using multi-offset/angle 
data.  Combinations of F.C.'s may be used to obtain an unbiased estimate of the anisotropic gradient 
along with an unambiguous estimate of the symmetry axis.  In addition, the normal and tangential 
weakness parameters (Hsu and Schoenberg, 1993) may be individually estimated.   

First, the near offset Rüger equation is reviewed with the goal of describing the limitations and 
parameters calculated as part of an industry standard Azimuthal AVO analysis.   Next, Linear Slip 
Deformation (LSD) theory (Schoenberg, 1980) for HTI media is introduced.  This is done to reduce the 
number of free parameters used to describe the HTI stiffness matrix to make the inversion problem 
more stable.  This has the added benefit of introducing intuitive fracture parameters that describe the 
azimuthal anisotropy.  It is then shown how to relate these parameters to those used in the near offset 
Rüger equation. Having established these relationships, Fourier transforms and some of their 
properties are reviewed.  The Shaw and Sen (2006) linearized Zoeppritz azimuthal reflectivity, 
parameterized in terms of linear slip parameters, is then written in the same form as a Fourier series.  It 
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is thus possible to understand the physical significance to each of the F.C.'s.  It is then shown that by 
combining these F.C.'s the normal and tangential weakness parameters may be estimated in a 
nonlinear fashion.  Further, by using both the 2nd

 and 4th F.C.'s the symmetry axis may be estimated 
without ambiguity.  These techniques are demonstrated with both synthetic and real data. 

The near offset Rüger equation 

For the case of HTI anisotropy, with the media having the same symmetry axes, the azimuthal 
reflectivity is described by the Rüger equation (Rüger, 2002).  The near offset Rüger equation is  

         ,sincos, 22  symaniiso BBAR       (1) 

where  represents the source to receiver azimuth, θ is the average angle of incidence, A is the intercept, 

Biso is the isotropic gradient, Bani is the anisotropic gradient and sym is the azimuth of the symmetry axis.  
Hudson (1981) theory may be used to show that the anisotropic gradient Bani is proportional to the crack 
density.  The symmetry axis is perpendicular to the strike of the fractures. This near offset approximation 
ignores higher angle terms, introducing a bias into the Bani estimate.  The advantage of using this 

approximation is that equation (1) may be linearized by rewriting it in terms of cos(2) and sin(2) and 
thus be solved in a straightforward fashion using least squares inversion (Downton and Gray, 2006).  The 
disadvantage of this approximation is that it is impossible to tell whether the anisotropic gradient is 

positive or negative, thus introducing a 90 degree ambiguity into the estimate of sym.   

Linear slip theory 

The LSD theory (Schoenberg, 1980) allows fractures to be modeled as a perturbation of the 
background compliance of the unfractured rock.  The total compliance of the rock S is the sum of the 
background compliance Sb plus the compliance due to the fractures Sf.   The fractures can be modeled 
as an imperfectly bonded interface where the traction is continuous but the displacement might be 
discontinuous.  The displacement discontinuity is linearly related to the traction and in its simplest form, 
the fractures normal to the x-axis, gives rise to HTI anisotropy (Schoenberg and Sayers, 1995).  For 
example, the displacement discontinuity normal to the fracture is proportional to the normal stress.  This 
proportionality constant is the normal fracture compliance BN.  Similarly, the tangential fracture 
compliance BT may be defined.  Instead of working with compliances, I choose to parameterize the 

problem in terms of the normal weakness parameter N = MBN./(1+MBN), and tangential weakness 

parameter T = BT./(1+BT), where M=+2.  These are fractional parameters which range from 0 to 1.  

In both cases when the fracture weakness is zero the fracture has no influence on the compliance.  
Bakulin (2000) shows that the anisotropic gradient may be written in terms of these weakness 

parameters so that Bani=g(T -N) where g and g is the square of the S-wave to P-wave velocity 

ratio of the unfractured rock.  The difference operator  represents the difference in layer properties 

between the lower and upper media, thus T is the difference in tangential weakness between the two 

layers.  For future reference the variable =g(T -gN)  is also introduced.  Both  and Bani are weighted 
differences of the tangential and normal weaknesses with slightly different weighting factors.   

 

Fourier series  

The discrete Fourier series for a periodic discrete function R()  over the interval (-π, π)  is  
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The discrete Fourier coefficients can be calculated by taking the dot product of R(θ,) for a particular 
angle of incidence with either a cosine series 
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or a sine series 
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for integer values of n  such that n  ≥ 0. Alternatively, the Fourier series can be written in terms of the 
magnitude  
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Figure 1:  A crossline from a Canadian 3D showing the FCs compared to the anisotropic gradient (c) and isotropy plane azimuth (f) obtained from the near 
offset Rüger equation.  The Fourier coefficients were calculated on azimuth sectored stacks with an average incidence angle of 35 degrees. The n=0 FC 
(a) is equivalent to the average 35 degree angle stack.  The scaled n=2 FC (b) closely matches the anisotropic gradient (c) from the near offset Rüger 

equation.  The scaled n=4 FC (d) or  contains independent information from the n=2 FC (b) but also has many similarities.  The azimuth calculated from 
the n=2 FC phase (e) matches closely to that obtained from the Rüger equation (f).   

 

 



  

 
GeoConvention 2012: Vision 4 

Thus  
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Because of reciprocity P-wave seismic data only has even values of n.  The D.C. component (n = 0) is 
equivalent to the average angle stack.  Figures 1a, 1b and 1d display for a particular crossline the 
magnitude for the n = 0, 2, and 4 F.C.'s calculated at an average angle of incidence of 35 degrees for a 
3D seismic dataset from Western Canada.  

 

Azimuthal reflectivity 

Shaw and Sen (2006) derived an azimuthal reflectivity expression for aligned HTI media parameterized 
in terms of normal and tangential weaknesses.  Writing this expression in terms of F.C.'s results in 
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The D.C. component (n = 0) is equivalent to the classic 3-term AVO expression.  In this case, the 
coefficients A, B and C are also a function of the normal and tangential weaknesses.  For small angles 

of incidence, the n = 2 F.C. is approximately     2

2 sin*5.0 aniBr    thus the anisotropic gradient is 

just a scaled version of the second Fourier coefficient.  For example, at an angle of 30.0°,  Bani =8*|r2|.  
This is a biased estimate of the anisotropic gradient since the sin2θ tan2θ term is ignored.  However, it 
has similar accuracy to the near offset Rüger equation since the same order term is also ignored.  
Figures 1c and 1b compare the anisotropic gradient obtained using the near offset Rüger equation with 
that obtained using a single F.C. for n=2 at a single angle of incidence.  The symmetry axis is 
calculated from the n=2 F.C. phase using equation (6).  It is important to note that in calculating the 
magnitude the positive root is used.  Thus, similar to the Rüger equation, when Bani is actually negative, 
the estimated azimuth needs to be rotated 90°.  Figures 1e and 1f show the close match between 
isotropy plane azimuths obtained by the two methods.   The n = 4 F.C. is just a scaled version of the 

variable  (Figure 1d).  For arbitrary anisotropic symmetries (Ikelle, 1996) the largest coefficient for the 
linearized version of the Zoeppritz equation is n = 4.   

 

Nonlinear inversion 

The parameters Bani and  are both linear combinations of N and T, thus it should be possible to 
independently solve for these parameters.  In practice this is complicated due to the fact that the F.C.'s 

are estimating magnitudes rather than signed values of these quantities (i.e.  | Bani | and | |).  In order 
to determine the signed values, the symmetry axis must be determined.  This problem is nonlinear but 
can be determined using multiple angles of incidence and the n = 2 and n = 4 F.C.'s.   

Figure 2 shows the results of a nonlinear inversion on synthetic data.  Being a nonlinear problem the 
misfit function is multi-modal.  In order to verify that the nonlinear inversion correctly estimates the 
global misfit minimum, a large number of models were tested (> 16,000).  Different combinations of the 
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symmetry axis, normal and tangential weaknesses were used to generate forward models using the 
Zoeppritz equation.  Noise was added to create a signal-to-noise ratio of 10:1.  The resulting synthetic 

data were then inverted for the isotropy plane iso, N and T.  Bani and  were also calculated from 

N and T. Figure 2 shows the estimated variables compared to the actual variables.  If the estimated 

value corresponds to the ideal value the points should be on the diagonal line connecting the lower 
hand left corner to the upper right hand corner.  The figures are color coded so that the color represents 
the number of solutions that fall within a particular bin.  The nonlinear inversion properly assigns the 

correct sign to Bani in 99.5% of the models (Figure 2b).  In the case when  (a small percentage of 
the models) the n = 4 F.C. is non-informative and there is not enough information to uniquely determine 
the symmetry axis.  This contrasts with the near offset Rüger equation (Figure 2a) where only positive 
values of Bani are estimated.  Further, the small Bani values estimated by the Rüger equation show 
significant bias due to the neglection of the higher offset term.  There is little error in the azimuthal 

estimate other than the points associated with  The normal and tangential weakness estimates 
plot along the diagonal again showing the estimated values accurately predict the majority of cases.  
Only the normal weakness is shown in Figure 2c due to lack of space, but the tangential weakness 

behaves in a similar fashion.  There is slightly more dispersion in the estimates of N and T  than  

Bani  and  due to the magnification of the noise through the reparameterization. 

 
Figure 2:  Comparison of estimated versus actual model parameters.  If the estimate matches the actual value it should fall along the main diagonal.  The 
colors represent how many estimates fall within a particular bin.  Figure 2a shows this for the anisotropic gradient calculated using the near offset Rüger 
equation while 2b shows the anisotropic gradient calculated using the nonlinear inversion using Fourier coefficients.  Figure 2c) shows the estimated 

versus actual normal weaknesses N. It is slightly more sensitive to noise.    
 

 

Figure 3 illustrates the results of this nonlinear inversion on a dataset from Western Canada.  Figure 3a 
shows the Anisotropic Gradient calculated from the magnitude of the 2nd FC of one particular incidence 
angle.  Similar to the Rüger result, all the Bani values are positive.  Since the sign of Bani is not available 
this introduces a 90 degree ambiguity into the azimuth estimate (Figure 3c) which shows up as a 
layering effect in the display.   The nonlinear inversion resolves the sign ambiguity of Bani (Figure 3b) 
also changing the amplitudes slightly because of the more accurate theoretical model.   Recall, the near 
offset Rüger (and linear) inversion ignores the far offset term introducing a bias for small values of Bani 
(Figure 2a and 2b).   The nonlinear azimuth estimate (Figure 3d) has a much more stable azimuth 
direction consistent with the dominant stress regime of 135 degrees.  This behavior is more geologically 
believable.   
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Figure 3:  A crossline from a Canadian 3D showing Bani calculated from a single FC (a) compared to the anisotropic gradient estimate from 
multiple FCs input into a nonlinear inversion (b).  The nonlinear Bani has both positive and negative values. The azimuth calculated from the 
nonlinear inversion (d) is consistent with the dominant stress in the area (135 degrees) and does not show the same periodicity as the azimuth 
calculated in a linear fashion similar to the Rüger equation.   

Conclusions 

The use of azimuthal Fourier coefficients allows one to decouple the azimuthal AVO analysis into two 
parts; the traditional AVO analysis and an azimuthal amplitude analysis.  The fracture parameters 
primarily influence the azimuthal amplitude response and can be isolated by observing non-zero F.C.’s.  
The  n=0 F.C. has the same form as the traditional three-term AVO problem and may be solved in a 
traditional fashion.   In the case of aligned HTI media described by linear slip theory, the results of the 
two analyses can be combined to uniquely determine (in the majority of cases) the symmetry axis, the 
fractional P-wave velocity, S-wave velocity, density, normal and tangential weaknesses or variations 
thereof. 

The parameters typically determined by the near offset Rüger equation, the anisotropic gradient and 
the symmetry axis, can be obtained using just the 2nd F.C. calculated on one angle stack.  The 
uncertainty of these estimates decrease as the angle of incidence is increased.  By using additional 
F.C’s and angles of incidence, the symmetry axis ambiguity can be resolved and an improved estimate 
of the anisotropic gradient obtained.     This additional analysis relies on information from the 4th F.C. 
which is typically noisier than the 2nd F.C.  Both these F.C.’s can be quality controlled to determine their 
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reliability.  Even though they both provide independent information, both are weighted sums of the 
normal and tangential weaknesses and should be correlated.    
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