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Summary 

We design a suite of surface-consistent matching filters for processing time-lapse seismic data in a 
surface-consistent manner. The frequency-domain surface-consistent design equations are similar to 
those for surface-consistent deconvolution except that the data term is the spectral ratio of two surveys. 
We compute the spectral ratio in the time domain by first designing trace-sequential, least-squares 
match filters and then Fourier transforming them. A subsequent least-squares solution then factors the 
trace-sequential match filters into surface-consistent operators. 

Introduction 

It has become an industry practice to acquire multiple seismic surveys at regular time intervals to 
monitor subsurface changes due to hydrocarbon production or fluid injection. As exploration 
seismologists, our main objective is to obtain an image that represents our best estimate of the 
subsurface changes. This goal is challenged by the fact that seismic acquisition is nonrepeatable, and 
that diverts our attention from investigating the time-lapse difference to minimizing the nonrepeatability 
issues of seismic acquisition. There has been significant work published on processing time-lapse 
seismic, in particular that of Rickett and Lumley (2001) who discuss the details of the cross-equalization 
process that reduces the nonrepeatable noise caused by differences in vintage of seismic acquisition 
and processing. Cross-equalization is based on processing two repeated seismic surveys in parallel 
and taking the difference between them after each step. Generally, this cross-equalization process 
should show a progressive decrease in nonrepeatable noise and improvement in time-lapse changes 
(Rickett and Lumely, 2001). 

The progressive decrease in nonrepeatable noise can be an exhaustive process. Instead, we propose 
a method that takes care of much of the nonrepeatable noise at the very beginning of the processing 
workflow. This method employs two basic concepts that are widely used in geophysical data 
processing:  the surface-consistent model and matching filters. We will present an algorithm that 
combines both ideas and demonstrate its simplicity and advantage in processing time-lapse dataset. 

Theory of surface-consistent matching filter 

The surface-consistent model was first introduced by Taner and Koehler (1981) who suggested the 
recorded seismic trace can be modeled as the convolution of each trace's source effect, receiver effect, 
offset effect and midpoint effect. This model is similar to the one used for solving the static problem by 
Taner et al. (1974) and Wiggins et al. (1976). The surface-consistent model has been implemented by 
many authors to obtain a more accurate and stable deconvolution (Morley and Claerbout, 1983; Levin, 
1989; Cambois and Stoffa, 1992; and Cary and Lorentz, 1993), and amplitude adjustment (Yu, 1985). 

The time-domain form of the modeled seismic trace (Taner and Koehler, 1981; and Morley and 
Claerbout, 1983) is: 

 ( ) ( )* ( )* ( )* ( )ij i j k ld t s t r t h t y t  (1) 
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where ( )ijd t  is the seismic trace, t  represents the time-domain, is  is the source effect at the i th  

location, jr  is the receiver effect at the j th location, kh is the offset effect, k i j  , and ly is the 

common midpoint effect, 
2

i j
l


 . The asterisk ( *  ) represents the convolution. 

Extending the surface-consistent data model to the case of designing matching filters to equalize two 

seismic surveys, we write equation 1 as follow:  

 1 ( ) 1 ( )* 1 ( )* 1 ( )* 1 ( )ij i j k ld t s t r t h t y t  (2) 

 2 ( ) 2 ( )* 2 ( )* 2 ( )* 2 ( )ij i j k ld t s t r t h t y t  (3) 

where indices 1 and 2 denote two datasets, a baseline survey and a monitoring survey, respectively. 
Fourier transforming equations 2 and 3 and forming their ratio and taking the logarithm gives 
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where   is frequency, the left-hand side is the data log spectral ratio and the right-hand-side contains 

its surface consistent components and the "hat" denotes the Fourier transform. However, computing 
the ratio of two spectra directly is undesirable because there may be division by zero or very small 
numbers and the resulting time-domain match filter will match both signal and noise. 

As a stable alternative, we compute a trace-sequential matching filter, m , in the time-domain for pair of 

traces in the two surveys. The design equations for this filter are: 

 1 2
d D m  (5) 

where 1d  and 2d  represent the same trace from survey 1 and 2, respectively, and 
2

D is a convolution 

matrix formed from 2d . A Solution for equation 5 can be obtained such that the 2L  norm, 1 2 2
d D m , 

is minimum. Once this trace-by-trace matching filter is computed, the result is transformed into the 
frequency-domain, giving a stable estimate of the left-hand side of equation (4). 

Now that we have obtained the data part of equation 4, we can solve it as a general linear inverse 
problem such that 

 d Gx  (6) 

where G  is a coefficient matrix containing the positions of the sources, receivers, offsets, and common 

mid-points. The unknowns 
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column vector x . Figure 1 illustrates the general form of equation 6. Solving equation 6 is now straight 

forward where the aim is to minimize the 
2

d Gx .  The solution for x  can be decomposed into four-

components: source component, receiver component, offset component, and common mid-point 
component. These components are the matching filters applied to the static section of the monitoring 
survey in order to match it to the baseline survey. 
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Figure 1: Matrix structure of the system of linear equation described in equation 6. 

Example 

To examine our new idea, we constructed a simple 2.5km wide and 1km thick 2D geometry. The model 
consists of four layers and a reservoir unit, 500m wide and 20m thick (Figure 2), between layers three 
and four. The velocity is homogeneous in each layer, except for the near-surface layer where lateral 
variations were introduced. Using this geometry, we generated two earth models, a baseline model and 
a monitoring model, with different near-surface and reservoir velocities. We created 51 shots with 
spacing 50m and 101 geophones per shot incremented by 10m. The maximum record length is 1s with 
a 4ms sampling interval. An acoustic finite-difference modeling algorithm is used to create the shot 
records. We have also added variations to the shot strengths and the receiver couplings to allow for the 
nonrepeatability observed in real seismic acquisition. 

 

Figure 2: Earth model representing baseline model (a) and monitoring model (b). Both models have different 
near-surface and reservoir layer velocities. 
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Figure 3: An example of a shot gather at x-coordinate 
1250m from baseline survey (a), monitoring survey (b), 
matched monitoring survey (c) and the difference (d) 
between the baseline shot and the matched monitoring 
shot. The NRMS of the difference is shown in (e). The 
window of analysis is between the two red lines. 
 

 

In Figure 3 we show an example of a single shot record located at x-coordinate 1250m from both the 
baseline survey and the monitoring survey. The computed four-component surface-consistent matching 
filter is applied to the monitoring survey and is shown in Figure 3c. The difference between the baseline 
survey shot record and the matched monitoring survey shot record is illustrated in Figure 3d and all 
plots have the same amplitude scaling as the baseline shot record. The difference is very small inside 
the matching filter window between the two red lines. In addition to this qualitative analysis of the 
difference, we plotted the NRMS (normalized root mean square) of the difference, only in the window of 
analysis, where small NRMS values indicate similarities between the traces of the baseline survey and 
the matched monitoring survey. Preferred values for NRMS are in the 20% range and those values are 
commonly obtained towards the final stages of processing. Our new technique was able to reduce the 
difference quite significantly down to about 20% in prestack stage prior to any processing (Figure 3e). 

Conclusions 

We have developed a method to design surface-consistent matching filters that can be used to match 
one dataset to another in a time-lapse experiment.  Our method is similar to surface-consistent 
deconvolution except that the data required is the spectral ratio of each pair of traces in the survey.  We 
compute the spectral ratios in a stable fashion as the Fourier transform of a least-squares matching 
filter for each pair of traces.  Then we factor these trace sequential matching filters into surface 
consistent terms by a second least-squares solution. We have shown that the surface-consistent 
matching filter can significantly reduce the nonrepeatability often observed in time-lapse datasets. 
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