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Summary 

We apply skeletonization approach to geophysical data to recognize geologic structures and pick 
seismic horizons automatically. We formulate the technique to be explicitly applicable to all gridded 
geophysical data. The method consists in extracting multiple features of “wavelets” which may be single 
or double peaks or troughs characterized by amplitudes, widths, orientation angles, spatial dimensions, 
polarities, and other attributes. The wavelets are further connected based on similarities of these 
attributes to form the “skeleton” of the geophysical image. In addition, optional 2-D or 1-D filtering 
conducted during the identification process allows extracting parameters of background trends and 
reduce the adverse effects of low frequencies on skeletonization. Gravity, magnetic, and seismic data 
are used to illustrate the utility and effectiveness of the algorithm. The results show that the approach is 
useful for identifying structures in complex geophysical images and for automatic extraction of their 
attributes. 

Introduction 

Geophysical data are used to study the structure, composition, dynamic changes, and to provide 
reliable models of the Earth based on the principles of physics. Although the types of geophysical 
images, such as seismic, gravity, and magnetic maps, are variable, they also possess a number of 
common features. In two-dimensional (2-D) images, such features can often be expressed by using the 
amplitudes, widths, polarities, orientation angles and/or other attributes of some “anomalies”, or 
“wavelets”. Automatic identification of such spatially-connected wavelets and measurement of their 
parameters is the general objective of the pattern-recognition process called “skeletonization”.  

The geophysical skeletonization technique was developed initially for automatic event picking in 
reflection seismic data (Le and Nyland, 1990; Lu and Cheng, 1990; Li and Vasudevan, 1997; Li et al., 
1997). In these approaches, pattern primitives (amplitudes, durations and polarities) were extracted 
from seismic traces and connected according to similar features to determine coherent events. Strong 
seismic events were used as a guide to track weaker events and find connections iteratively. These 
approaches were based on the binary consistency-checking (BCC) scheme by Cheng and Lu (1989). 
Eaton and Vasudevan (2004) extended this type of skeletonization to aeromagnetic data by introducing 
two-pass spatial processing and measuring strike directions, event linearities, amplitudes, and 
polarities.  

Because they are derived from seismic processing, the existing geophysical skeletonization 
approaches are limited to near-zero mean wavelets. Even in reflection seismic records, a low-frequency 
background can thwart feature extraction and cause disruptions in the “skeleton”. For example, 
because of a positive bias in amplitudes, the waveform in Figure 1 would only be identified as a single 
wavelet. However, it would definitely be better to recognize two positive peaks within this wavelet. Pre-
filtering of the image prior to event detection could also be undesirable, as this could complicate 
processing and cause losing the information about the background trend. For potential-field data, the 
above issues become particularly important and complex. In addition, although skeletonization of 
gridded data in two passes in orthogonal directions (Eaton and Vasudevan, 2004) allows detecting 
features at arbitrary orientation, the sensitivity of this detection still remains azimuthally non-uniform.    
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In this paper, we propose a skeletonization technique specifically designed for 2-D gridded geophysical 
data. Seismic (pre- or post-stack) records are only considered as special cases of such grids, with 
specific treatment of the time dimension and also additional constraints and attributes. While achieving 
the same general goals of quantitative recognition of linear features in gridded images, the present 
approach differs from the existing ones by: 1) feature detection performed isotropically, at a continuous 
range of angles, 2) use of some new features, such as orientation angles and background-trend level, 
to meet the complexity of the data, and 3) use of a more flexible event detection scheme instead of the 
BCC.  

 
Figure 1: Wavelet extraction: (a) Extraction of an anomaly (pink) from a seed cross-section. AB is the minimal 

cross-sectional size; 

(b) Identification of wavelet attributes. Blue line is the extracted wavelet. A1 and A2 is peak and trough amplitudes, 
respectively; M1 and M2 are the background amplitudes; D1 and D2 are the widths of the peak and trough. 

The approach is implemented as part of a broader processing and interpretation environment, which 
allows handling, filtering in various ways, and displays of 2-D gridded, as well as of seismic and well-log 
data (Chubak and Morozov, 2006). This environment also offers a unique capability of using large 
volumes of potential-field data in the traditional, serial, seismic-processing type processing. As shown 
in data examples below, this results in a flexible algorithm capable of working with potential-field as well 
as pre- and post-stack seismic data. 

Method 

Similarly to the previous approaches (e.g., Eaton and Vasudevan, 2004), skeletonization is achieved in 
two principal steps:1) identification of elementary “wavelets” in the gridded images, and 2) connection 
of these wavelets to form the “skeleton” of the image. In the potential-field case, the skeleton comprises 
the “lineaments” detected in the image, and in seismic case, it can be interpreted as a set of “horizons”.   

1) Wavelet Detection and Feature Extraction. 

Starting from a grid of “seed” vertical or horizontal cross-sections, wavelets in the 2-D grid are identified 
as combinations of one or two amplitude deviations from the background trend level. We refer to these 
deviations as “humps” (Figure 1). Humps are first searched within the cross-section line, and then their 
orientation azimuths are determined by minimizing the cross-sectional sizes (AB in Figure 1a).  With the 
new feature of subtracting the slow-varying trend, the humps are identified even on top of a slowly-
varying amplitude background (Figure 1b). Once the wavelets are isolated, their polarities (directions) 
are determined by comparing the two humps within them (as by Eaton and Vasudevan, 2004) or also 
by the comparing the amplitudes of adjacent wavelets. “Undefined” values of polarities are also allowed 
where they cannot be determined consistently. 

For subsequent pattern analysis, the wavelets are determined by peak or trough amplitudes (A1 and 
A2), widths (D1 and D2), orientation angles (φ), background levels and polarities P, Figure 1b). These 
parameters represent the feature sets: 

                                       1 2 1 2 1 2, , , , , , ,f A A D D M M P  . (1) 
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2) Wavelet connections 

After all wavelet features are determined, they are spatially connected to form the skeleton. This 
process is started from either: 1) wavelets manually picked by the user or 2) the strongest amplitudes. 
First, each selected wavelet is connected to several adjacent wavelets according to the lowest 
connection costs.  The cost function is designed to evaluate the similarity of two wavelets. For example, 
for humps A and B, the cost function is (Figure 2), 

                               
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where rA and rB are the spatial coordinates, fA and fB are the corresponding feature vectors (1), and wi 
are some empirically-determined weights.    

 

Figure 2: Horizon connection.  

Wavelet A and C are interpolated at the location of B (blue) and cross-correlated with wavelet B. Dotted line is the 
proposed connections tested for optimality. 

Among all pairs of potential connections, optimal triplets are further found. For example, for wavelet B 
in Figure 2, several candidates for adjacent connections A and C are considered based on the 
orientation angle, φ.  Among these candidates, the optimal pair is found by minimizing the following 
cost function:  

       (,,)((,)(,))*cross-correlation(interp,)ConnectABCCostABCostBC BB , (3) 

where interp(B) (blue line in Figure 2) is the feature set interpolated at location B by using wavelets A 
and C. and their mutual cost functions, Cost(A,B) and Cost(B,C). Note that this triplet connection 
scheme does not use the somewhat arbitrary Euclidian distance and area-of-triangle principles used by 
Li and Vasudevan (1997) but measures the similarity of wavelets directly by their zero-lag cross-
correlation (Figure 2). 

Examples  

Several examples of potential-field and seismic data are used to illustrate the usefulness of our 
algorithm. In Figure 3 and 4 are magnetic and gravity examples using regional gridded datasets for 
Southern Saskatchewan and Southwestern Manitoba obtained from Natural Resources Canada. In 
these Figures, note the dominant linear event trends, which are SW-NE in the northern parts of the 
images and NW-SE in the southern areas. The “skeleton” of the image also includes the amplitudes of 
positive anomalies, which are indicated by the sizes of circles plotted in these Figures.  

Figure 5a shows a small portion of the seismic stacked section from Weyburn Oil Field. In Figure 5, the 
corresponding skeleton image is given, with coloured circles indicating the peak and trough amplitudes. 
These amplitudes were extracted on top of a background trend, which was identified by smoothing 
using a 30-ms sliding window. Note that the connections show the correct trends despite the slow-
varying amplitudes present between 1060–1090 ms in the seismic records (Figure 5a).  
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Figure 3: Aeromagnetic map of southern Saskatchewan and SW Manitoba.  

The circles indicate major features and the lines are picked linear anomalies. Colours of the circles correspond to 
orientations of the anomalies, relative to the North-South direction (see palette).  

 

Figure 4: Regional gravity data example. The lines are feature connections.  Circle sizes indicate the amplitudes 
of the anomalies. Yellow circles indicate positive-polarity and the purple indicates the negative polarity. 
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Figure 5: Seismic data example: a) stacked section; b) is the skeleton image from the area marked by the red 
rectangle (1020ms~1120ms) in plot a), colour bars show amplitudes of peaks and troughs.  

Conclusions 

The geophysical skeletonization proposed in this paper is effective and useful for pattern recognition in 
potential-field and seismic images. The process of skeletonization could identify and characterize the 
anomalies by correlating the adjacent wavelets. Compared with previous methods, our algorithm is 
more general, isotropic in feature detection, and applicable to arbitrary gridded geophysical data. The 
algorithm is also integrated in a powerful seismic/potential-field data processing system. With the new 
options for background-trend extraction, it provides more stable identification of lineaments and 
horizons. The skeleton image represents a convenient and quantitative tool for delineating geological 
structures in the maps or for auto-picking horizons in seismic images. The wavelets obtained by 
scanning gridded data along the orientation angles facilitate structure detection and its quantitative 
characterization. The results of both potential-field and seismic data illustrate that the skeletonization 
could aid in the interpretation for complex structures. Some future applications to advanced geophysical 
attributes, such as seismic amplitude versus offset, are being developed.  
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