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Summary 

We introduce a strategy for beyond-alias interpolation of seismic data using singular spectrum analysis. 
First, in the frequency-space (f-x) domain, a Hankel matrix is built from the spatial samples of the low 
frequencies. To perform interpolation at each specific frequency, the spatial samples are interlaced with 
zero samples. Then, another Hankel matrix is built form the zero-interlaced vector of data in a given 
frequency.  Next,  the  rank-reduced  eigenstate  of  the  Hankel  matrix  at  low frequencies  is  used  for 
beyond-alias conditioning of the Hankel matrix at given frequency. Finally, an anti-diagonal summation 
of the conditioned Hankel matrix gives the final interpolated data.  Synthetic and real data examples are 
provided to examine the performance of the proposed interpolation method.       

Introduction

A good abstract presents technically correct ideas with a fresh and enlightening perspective. 

Theory and/or Method

Your discussion should be pertinent, focused on the topic and of the appropriate length. To insert a 
chart, graphic, equation, etc. left click on Insert on the menu bar and then select Object or Picture. 

Figure 1: Description of chart, graphic, equation, etc.

Examples

The examples should support your ideas.

Conclusions

Definitive conclusions are made and supported by your data and convincing arguments. 
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Summary

Full-waveform inversion (FWI) is a nonlinear data fitting procedure based on seismic data to derive a
accurate velocity model. With the increasing demand for high resolution images in complex geological
settings, the importance of improvements in acquisition and inversion become more and more critical.
However, these improvements will be obtained at high computational cost, as a typical marine survey
contains thousands of shot and receiver positions, and FWI needs several passes through massive
seismic data. Computational cost of FWI will grow exponentially as the size of seismic data and
desired resolution increase. In this paper we present a modified Gauss-Newton (GN) method that
borrows ideas from compressive sensing, where we compute the GN updates from a few randomly
selected sequential shots. Each subproblem is solved by using a sparsity promoting algorithm. With
this approach, we dramatically reduce the size and hence the computational costs of the problem,
whilst we control information loss by redrawing a different set of sequential shots for each subproblem.

Introduction

Full-waveform inversion (FWI) can be formulated as a wave-equation based nonlinear optimization
problem in which we invert the model by minimizing the two norm of the difference between observed
data and estimated data. One well-known class of algorithms for FWI problem are Gauss-newton
(GN) methods which involves the inverse of approximated Hessian (see e.g. Pratt et al., 1998; Er-
langga and Herrmann, 2009, and the references therein). The action of the Hessian can be evaluated
by combined action of the Jacobian operator (Reverse time migration) and its adjoint (Linear born
scattering forward modeling), each evaluation based on one single shot and one single frequency
requires at least 3 forward/adjoint simulations. This generates a huge mount of simulations for the
whole FWI problem (Li et al., 2011), moreover, the computational cost grows exponentially as data
size increases which is the main obstacle preventing the successful application of FWI to industrial
scaled data.

As we presented in our earlier work (Li et al., 2011), to avoid multiple passes through all data when
we calculate GN updates, we regularize the model updates to be sparse in the curvelet domain (Her-
rmann et al., 2008). We then compute the GN updates using sparsity promoting techniques derived
from work in compressive sensing (CS) (Candès et al., 2006; Donoho, 2006), according to which a
signal can be recovered from a severely subsampled data set. This allows us to replace a large num-
ber of conventional sequential sources by a limited number of simultaneous phase-encoded sources.
As a result we can significantly lower the computational cost of computing GN updates by control-
ling the number of shots used in the algorithm. However, randomized source superposition relies on
full data acquisition which means we should have all the receivers fixed along the seismic line. This
means that we can not apply this approach to marine data. To overcome this problem, we replace the
randomized superposition by randomly selecting subsets of sequential shots, Instead of solving each
sparsity promoting GN subproblem precisely, we only solve each subproblem approximately until a
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particular residual decrease and sparsity level are achieved. These subproblems are solved by using
SPG`1 (a spectral projected gradient method Berg and Friedlander, 2008). We redraw a different set
of shots for each GN subproblem, which allows more information to enter without extra computational
costs.

Theory

Dimensionality reduction: Full-waveform inversion can be considered as an unconstrained opti-
mization problem in which we minimize a least-squares misfit between observed data and synthetic
data

minimize
m

Φ(m) :=

{
1

2K

K

∑
i=1
‖di−Fi[m,qi]‖2

2 =
1
2
‖D−F [m,Q]‖2

F

}
, (1)

with di monochromatic shot records of the Earth response to monochromatic sources qi, Fi[m,qi], i=
1 · · ·K monochromatic nonlinear forward operators, and K = N f ·Ns, with N f the number of frequencies
and Ns the number of sources. In the acoustic constant-density case, this operator is parameterized
by the unknown velocity model m and involves the inversion of a large system of linear equations that
represents a discretization of the time-harmonic Helmholtz equation.

In order to reduce the computational cost we use a small subset of all the shots. To achieve this we
multiply the data and source function in Equation 1 from the right hand side with a tall matrix whose
size is Ns (number of all source)×Ns′ (number of subset sources), with Ns′ � Ns

minimize
m

Φ(m) :=

{
1
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}
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with {D, Q} := {DW, QW} (Romero et al., 2000; Beasley, 2008; Krebs et al., 2009).

Here, we generate matrix W by randomly picking columns from the identity matrix, which means we
randomly pick a small subset of sequential shots from all the data.

Modified Gauss-Newton subproblem with sparsity promotion: In our approach, we solve the
FWI problem with a Gauss-newton method which linearizes the function inside the convex `2-norm.
When all sources are used, this method yields linear overdetermined GN subproblems. We turn this
overdetermined system into a underdetermined system by subsampling the sources, as described
above. This gives us GN subproblems as follows:

minimize
δm

1
2
‖D−F [m,Q]−∇F [m,Q]δm‖2

F . (3)

where ∇F [m,Q] is the linear born-scattering operator. Rather than solving this problem by using
standard method with `2 regularization on the result, we use `1 regularization instead to promote
sparsity of the model update δm in some transform-domain. We compute the update δm by solving
the following constrained optimization problem (LASSO problem):

minimize
x

1
2
‖δD−∇F [m,Q]SHx‖2

F subject to ‖x‖1 ≤ τ, (4)

where δD = D−F [m,Q]. In this expression, SH is the inverse of the sparsifying transform and x is a
vector of coefficients in the transform domain. The constraint enforces the `1-norm of x to be smaller
than some constant τ. In practice, LASSO problems are solved with a spectral projected gradient
(SPG) algorithm implemented in SPG`1 (Berg and Friedlander, 2008). The parameter τ is given by
the algorithm automatically using the tradeoff curve between the optimal value of the misfit and the
one norm of the solution(Herrmann et al., 2011).
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Examples

To test the performance of our inversion algorithm in a realistic setting we generate data with a
synthetic velocity model (Fig. 1a) constrained by well information, while the source signature is a
12Hz Ricker wavelet. We use a smooth starting model without lateral information (Fig. 1b) for the
inversion process. All simulations are carried out with 350 shot and 701 receiver positions sampled
at a 20m and 10m intervals, with offset between 100m and 3000m. To improve convergence we
divide the whole FWI problem sequentially into 10 overlapping frequency bands, each of them has 10
frequencies of the interval 2.9−22.5Hz (Bunks et al., 1995). 10 GN subproblems (LASSO) are solved
for each frequency band. For each LASSO subproblem, we use 2 randomly selected sequential shots
and roughly 20 SPG`1 iterations. Hence, we are able to speed up the algorithm 87 times compared
to solving FWI with GN iterations, each using 10 LSQR iterations with all the data. In this example,
we carried out two experiments based on whether to use different sources for each subproblems
(renewals) or not. The results for with and without renewals are included in Fig. 1c and Fig. 1d . In
these results we obtained a significant improvement by using renewals which remove the crosstalk
artifacts and bring more contributing information to the results.

Conclusion

We modified the Gauss-Newton (GN) method, where we replace standard GN subproblems with
sparsity promoting LASSO problems. This modification can gives us high quality inversion results.
Significant speedup is attainable by limiting the number of sources. Sparse recovery in combination
with randomized dimensionality reduction allows us to speed up FWI significantly by iterating on small
subsets of the data only. We are able to obtain good inversion results from reduced experiments
based on randomized subsets of marine sequential shots, where renewals are very important for it
allows more information to enter into the problem without increasing the computational costs.
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Figure 1: Inversion results with modified GN method by using 2 randomly selected sequential shots, starting from 2.9Hz
over 10 frequency bands. (a) original model (m). (b) initial model (m0) used to start FWI. (c) full-waveform inversion with
renewals. (d) the same as (c) but without renewals

GeoConvention 2012: Vision 4


