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Summary 

We introduce a strategy for beyond-alias interpolation of seismic data using singular spectrum analysis. 
First, in the frequency-space (f-x) domain, a Hankel matrix is built from the spatial samples of the low 
frequencies. To perform interpolation at each specific frequency, the spatial samples are interlaced with 
zero samples. Then, another Hankel matrix is built form the zero-interlaced vector of data in a given 
frequency.  Next,  the  rank-reduced  eigenstate  of  the  Hankel  matrix  at  low frequencies  is  used  for 
beyond-alias conditioning of the Hankel matrix at given frequency. Finally, an anti-diagonal summation 
of the conditioned Hankel matrix gives the final interpolated data.  Synthetic and real data examples are 
provided to examine the performance of the proposed interpolation method.       

Introduction

A good abstract presents technically correct ideas with a fresh and enlightening perspective. 

Theory and/or Method

Your discussion should be pertinent, focused on the topic and of the appropriate length. To insert a 
chart, graphic, equation, etc. left click on Insert on the menu bar and then select Object or Picture. 
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Examples
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Conclusions

Definitive conclusions are made and supported by your data and convincing arguments. 
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Summary

Seismic data can be represented by a N-dimensional structure or tensor that can be unfolded in
N matrices. These N unfolded matrices (also called unfoldings) are low rank when the data are
composed of a linear superposition of linear events. Noise and missing observations increase the
rank of the unfolded matrices and, therefore, iterative rank reduction of these N unfolded matrices
permits to recover missing traces and to enhance the signal-to-noise ratio of the seismic data.

Introduction

Reconstruction of pre-stack seismic data has received attention in recent years because seismic
acquisition rarely leads to fully sampled wave-fields. Multi-dimensional reconstruction, commonly
named 5D interpolation, offers a remedy to this problem.

Rank reduction methods that exploit the low dimensionality of seismic data were proposed by Freire
and Ulrych (1988), Trickett (2008), Trickett et al. (2010) and Oropeza and Sacchi (2011). Methods
that directly operate on the seismic data matrix, often referred as eigen-image filtering, have been
proposed to denoise data in t − x (Freire and Ulrych, 1988) and f − x − y (Trickett, 2008). Recent
generation of methods operate on multi-level Hankel or Toeplitz matrices (Trickett et al., 2010; Gao
et al., 2011). At the core of these methods is rank reduction implemented via the SVD or Lanczos
decomposition. The basis idea is that properly sampled seismic data (or its Hankel matrix) in the
absence of noise are a low rank structure. Noise and unrecorded data will increase the rank of the
data matrix or its Hankel matrix. Therefore, denoising and reconstruction is easily implemented via
iterative rank-reduction (Oropeza and Sacchi, 2011).

The aforementioned methods operate on matrices or on multi-dimensional structures transformed
into multi-level Hankel matrices. Recently, rank reduction methods that directly operate on tensors
have been proposed to solve the multi-dimensional denoising and reconstruction problem (Kreimer
and Sacchi, 2011). Tensor decompositions offer an alternative way of rank reduction. Particularly,
the Higher-Order Singular Value Decomposition (HOSVD) (De Lathauwer et al., 2000) leads to a
reconstruction algorithm where there is no need of embedding the multi-dimensional seismic data in
multi-level Hankel matrices. In this paper, we investigate yet a new method that operates directly on
the seismic tensor. Sequential rank reduction of unfolded matrices leads to an iterative algorithm with
properties very similar to that of the HOSVD.
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Theory

A simple algorithm for rank reduction of seismic tensors

Consider a seismic volume with 3 spatial coordinates D(t ,x ,y ,z). The algorithm can be easily gen-
eralized to data that depends on four dimensions. The DFT can be used to transform the volume to
the f −x−y −z domain. For each temporal frequency f , this volume can be arranged as a 3rd order
tensor that depends on x ,y ,z. A 3rd order tensor can be unfolded in three matrices. Each unfolding
is a rearrangement of the slices of the tensor in different directions (or modes) into a matrix.

Assuming that each one of the unfolded matrices obtained form the tensor D(ω) is a low-rank struc-
ture, we propose an algorithm that applies rank reduction sequentially to each unfolded tensor:

for each frequency ω

D̃(ω) = D(ω)
for n = 1,2,3
unfold D̃(ω) in mode-n→ rank reduction (keep first r singular values)
refold to tensor D̃(ω),
end
end
D̃(ω) is the final rank-reduced tensor.

The above procedure can be used to denoise multidimensional seismic data in a similar way f −
x − y eigenimage filtering (Trickett, 2003) can be used to denoise data that depend on two spatial
dimensions.

A reconstruction algorithm

The rank reduction iterative algorithm adopted by Oropeza and Sacchi (2011) and Kreimer and Sac-
chi (2011) for simultaneous denoising an reconstruction is given by

Dk = a Dobs + (1−a T )D̃
k−1

, (1)

where a is a parameter between 0 and 1 that controls the level of reinsertion of noisy observations.
The operator T is the sampling operator with the same dimensions of the data, filled with zeros in
the bins with missing traces and ones in the bins containing samples. Notice that the reconstruction
iterative algorithm in equation 1 could also use the HOSVD (Kreimer and Sacchi, 2011). We are
surprised to notice that our simple rank reduction algorithm leads to results similar to those obtained
using rank reduction iterative reconstruction via the HOSVD.

Examples

To demonstrate that unfolded tensors are a low rank structure we designed a volume of size 128×
12×12×12 that contains 3 plane waves. Figure 1a displays the distribution of the eigenvalues for the
unfolded tensor in mode-1. This figure corresponds to fully sampled data with SNR = 100. Clearly,
only three singular values are different from zero. This coincides with the number of independent dips
in the data. Figure 1b corresponds to the case where the data were contaminated with noise. The
spectrum of singular values shows three dominant components immerse in smaller ones that model
the noise subspace.

Figure 2 shows the result of applying the rank reduction procedure explained in the previous section.
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(a) No missing traces and no noise
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(b) 50% missing traces and SNR = 1

Figure 1 : Distribution of eigenvalues for the mode-1 unfolding, for one frequency.

We have kept the first 3 singular values in each unfolding. Column (a) in the figure is the non-
decimated data (prior to noise contamination), the column (b) is the decimated data after addition
of noise (SNR = 1). The latter is also the input to our algorithm. Column (c) is the reconstructed
and denoised data and column (d) is the difference between the first and third column (error). The
reconstructed and noise attenuated volume have negligible artifacts. Overall, one can confirm that
the algorithm is able to recover the events with a high degree of accuracy. The reconstructed volume
has a Frobenius norm that is about 9 times the Frobenius norm of the reconstruction error. As a
comparison, we also used the truncated HOSVD. The results were very similar to those obtained
with the proposed algorithm.

We also examine the spectrum of singular values of the unfolded tensor (mode 1) for a data set
composed of three curved events. Figure 3 displays the distribution of eigenvalues for this exercise.
The spectra of singular values for this example does not show an abrupt change in amplitude; a
feature that can be used to reveal if the underlying data is a low rank structure. The reconstruction in
this case is possible. However, the quality of reconstruction degrades with curvature. This is a result
that was expected because the unfolded tensor is low rank when the data are composed of linear
events.

Conclusions

We have presented a novel application of the singular value decomposition for rank reduction on a
tensor. The algorithm operates directly on matrices obtained by unfolding the tensor. The proposed
rank reduction method permits to denoise and reconstruct seismic data. This procedure, although
different in nature, gives similar results to those obtained with the truncated HOSVD (Kreimer and
Sacchi, 2011) .
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Figure 2 : Reconstruction and noise attenuation for a 4D seismic volume with 3 linear events and
SNR = 1. Only a subset of the volume is displayed in the figure.
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Figure 3 : Distribution of eigenvalues for the mode-2 unfolding, for one frequency, curved events
case. The volume is fully sampled and has no noise.
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