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Summary 

We introduce a strategy for beyond-alias interpolation of seismic data using singular spectrum analysis. 
First, in the frequency-space (f-x) domain, a Hankel matrix is built from the spatial samples of the low 
frequencies. To perform interpolation at each specific frequency, the spatial samples are interlaced with 
zero samples. Then, another Hankel matrix is built form the zero-interlaced vector of data in a given 
frequency.  Next,  the  rank-reduced  eigenstate  of  the  Hankel  matrix  at  low frequencies  is  used  for 
beyond-alias conditioning of the Hankel matrix at given frequency. Finally, an anti-diagonal summation 
of the conditioned Hankel matrix gives the final interpolated data.  Synthetic and real data examples are 
provided to examine the performance of the proposed interpolation method.       

Introduction

A good abstract presents technically correct ideas with a fresh and enlightening perspective. 

Theory and/or Method

Your discussion should be pertinent, focused on the topic and of the appropriate length. To insert a 
chart, graphic, equation, etc. left click on Insert on the menu bar and then select Object or Picture. 

Figure 1: Description of chart, graphic, equation, etc.

Examples

The examples should support your ideas.

Conclusions

Definitive conclusions are made and supported by your data and convincing arguments. 
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Summary

The non-local means algorithm was originally developed for the random noise attenuation of images
and has recently been applied in other fields such as medical imaging. To denoise each pixel or point
of the image, the non-local means algorithm utilizes other similar pixels within the image regardless
of their spatial proximity, making the process non-local. Through assuming that the redundancy of the
structures within any image can be applied for denoising, we propose to adopt the non-local means
algorithm to attenuate random noise in seismic data.

Introduction

Random noise attenuation within seismic data has generally been performed using several methods
based upon different assumptions about the data. For example, band-pass, f −k, and kx−ky filtering
(Yilmaz, 2001) all transform seismic data into the Fourier domain to mute undesirable portions of the
signal, i.e., noise, based on the assumption that the signal and noise are separated in this new do-
main. Other methods such as f −x deconvolution (Canales, 1984), t−x prediction filtering (Abma and
Claerbout, 1995), and Cadzow filtering (Trickett, 2008) or Singular Spectrum Analysis (Oropeza and
Sacchi, 2011) attempt to remove random noise based on assumptions such as the linearity of seismic
events. Originally developed for image processing (Buades et al., 2005), the Non-Local Means (NLM)
algorithm is a random noise attenuation filter that assumes the degree of redundancy present within
an image can be utilized to reinforce the structures within any small window, or neighborhood, within
the image from the many similar windows that are also within that image. Thus, the data itself is em-
ployed for denoising. However, since the NLM algorithm uses the entire image or data set to denoise
a single pixel or location, it can become computationally demanding (Buades et al., 2010). Therefore,
several variations of the algorithm have arisen to decrease the computational time such as utilizing
its highly parallelizable nature and attempting to decrease the computational time for a single pixel
or location (Coupé et al., 2008; Mahmoudi and Sapiro, 2005; Brox et al., 2008). The NLM method
has been shown to successfully denoise medical data such as MRI, radar data, speech and audio
data, and microscopy images. We propose to adopt the NLM algorithm for attenuating the random
noise within seismic data. In particular, we use the traditional NLM algorithm originally developed by
Buades et al. (2005) for random noise attenuation on two synthetic data sets, one containing curved
events and sharp discontinuities and the other containing an AVO response.

Theory

We describe the NLM denoising algorithm based on the description provided by Buades et al. (2010).
Let a discrete noise contaminated image v be defined by

v = u+n, (1)

or simply the summation of the original noise free image u with random noise n. At the pixel i, the non
local means denoised pixel, v̂(i), is simply the weighted average of all of the pixels within the noisy
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image,
v̂(i) = ∑

j
w(i, j)v( j), (2)

where the weights w(i, j) depend upon the similarity between the pixels i and j and must satisfy the
conditions 0≤w(i, j)≤ 1 and ∑ j w(i, j) = 1. Note that each pixel i of the image has its own independent
weights of the other j pixels within the image. To quantify the similarity between the pixels i and j,
a neighborhood or window, Ni, around the pixel of interest is defined to allow for information about
local structures and textures to be incorporated. The neighborhood of a pixel is generally chosen to
be a square or cube, depending upon the dimensionality of the image, with a dimension size of 3 to
9 (Awate and Whitaker, 2006; Coupé et al., 2008; Dowson and Salvado, 2011) centered upon the
pixel of interest, however, the size and shape of the neighborhood can vary. The similarity between
the pixels i and j is then computed using a Gaussian weighted Euclidean distance, D(i, j), between
the neighborhood around the pixel i, v(Ni), and the neighborhood around the pixel j, v(N j),

D2 (i, j) = ||v(Ni)− v(N j)||22,a =
nl

∑
l

[Ga(l)(v(Ni(l))− v(N j(l)))]
2 (3)

Here the operator ||.||22,a denotes the squared Gaussian weighted Euclidean distance D2 (i, j), Ga rep-
resents the Gaussian kernel with standard deviation a, and l represents one of the total nl elements
within a neighborhood. For a two dimensional image, the Gaussian kernel, Ga, can be defined by,

Ga(x,y) = exp
(
−(x− xo)2 +(y− yo)2

2a

)
, (4)

where xo and yo denote the center of the Gaussian kernel with x and y corresponding to the coordi-
nates of the element l in equation 3. By weighting the Euclidean distance between the neighborhoods
of pixels i and j with a Gaussian kernel, smaller weights are assigned to distant pixels within a neigh-
borhood allowing structures closest to the pixel of interest to be more likely preserved. Given the
Gaussian weighted Euclidean distance, D(i, j), between the pixels i and j, the weights w(i, j) are
computed according to

w(i, j) =
1

Z(i)
exp

(
−D2 (i, j)

h2

)
, (5)

where Z(i) is the normalizing factor defined by

Z(i) = ∑
j

exp
(
−D2 (i, j)

h2

)
(6)

to ensure ∑ j w(i, j) = 1. The parameter h is a constant which controls the decay of the exponential
function as a function of the Euclidean distance. For example, a large value for h will provide similar
weight for all j pixels in the image while a small value for h will provide a significant weight for only
a few of the j pixels in the image. Proper estimation of the parameter h can be carried out using
methods such as the χ2 criterion for the goodness of fit if the standard deviation of the noise is known
or heuristically, like the estimation of the prediction filter length in f −x deconvolution, if little is known
about the noise. For consistency, the parameter h was chosen heuristically throughout this article.
In other words, we visually inspected the denoised image for both noise attenuation and structure
preservation to determine the optimal value for the parameter h. Typically this value was found to be
around one order of magnitude less than the largest amplitude present within the data.

Examples

One of the specific advantages that the NLM algorithm can have for attenuating random noise in
seismic data is its ability to handle sharp discontinuities, such as faults, and events with curvature. To
illustrate these capabilities, a synthetic data set containing linear, curved, and crossing events with
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Figure 1 a) Noisy synthetic data with linear, curved, and crossing events with sharp discontinuities.
b) Amplitude spectra for a), c) and d). c) Denoising with f − x deconvolution. d) Denoising with NLM.

sharp discontinuities was created and contaminated with random noise such that the signal to noise
ratio (SNR) was 1.2. Here, the SNR is defined as the variance of the data divided by the variance
of the noise. The denoising of this synthetic data set, as shown in Figure 1, was performed using
NLM with h = 0.15, a = 0.25, and an 11x11 square window and f − x deconvolution that was applied
in small spatial windows, 11 traces wide, to help validify its plane wave assumption. Unlike f − x
deconvolution, the NLM algorithm preserves the amplitude of the curved events and does not smear
seismic energy across the sharp discontinuities. Figure 1b depicts the Fourier amplitude spectrum
of the synthetic data and its denoised versions and highlights the ability of NLM to adequately main-
tain high frequencies as compared to f − x deconvolution, even though it is an averaging process.
However, it should be noted that to achieve these results, the simple implementation of the NLM
algorithm had a computational time that was greater than two orders of magnitude larger than that of
f − x deconvolution. To become more feasible for application with seismic data, further research into
decreasing the computational time of NLM needs to be conducted. As a second example, the NLM
algorithm was applied to a synthetic data set of SNR = 2 that contains an AVO signature, a constant
gradient between an amplitude of 1 to -1 across the section, as seen in Figure 2. For optimal results,
h was chosen to be 0.15 with a window size of 11x11 and a was chosen to be 0.25. While significantly
decreasing the noise level of this synthetic data set, NLM was also able to preserve and denoise the
AVO response of the horizon depicted with the red line.

Conclusions

The NLM algorithm is a random noise attenuation filter that utilizes the redundancy of structures within
a data set to denoise each location within it. Unlike other common denoising methods for seismic
data, the concepts governing NLM enables it to handle AVO responses, curvature and faults without
losing the resolution of these features. In its basic implementation there are three parameters to be
controlled: the window or neighborhood size, the standard of deviation a for the Gaussian kernel, and
the parameter h. While the algorithm is relatively insensitive to the parameter a since it only controls
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Figure 2 NLM denoising of a noisy synthetic data set containing an AVO response. From left to right:
noisy data, estimated noise, NLM denoised data, amplitude of the horizon of the red line (x - noisy
data, o - NLM denoised data).

the weights at the edges of a neighborhood, the neighborhood size must be chosen such that it is
large enough to encapsulate the structures of interest within the data. For reflection seismic data,
this means that the neighborhood size, in the time dimension, should larger than the wavelet length.
The parameter h controls the level of denoising the NLM algorithm performs and for the examples
provided was found to be optimally set to be about one order of magnitude less than the maximum
amplitude of the data. The NLM algorithm can be easily expanded to incorporate multiple dimensions
and has the potential to become a common denoising method in either prestack or poststack seismic
data because of its abilities to not smear seismic energy at termination points or sharp discontinuities
(i.e., faults).
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