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Summary

A crucial question which comes up over and over in the design of microseismic survey networks is:
“‘What is the smallest magnitude event which we will be able to detect?” In order to answer this
guestion, of course, to have reliable estimates of the spectrum of typical ground motion at a given site.
Less obvious are the difficulties in modeling event spectra. This poster addresses this issue in two
steps. First, the theoretical spectra of Brune (1970) are reconciled with the measured spectra of Clinton
and Heaton (2002). Second, the operations required to scale these spectra for comparison with power
spectral densities of ground motion and sensor self-noise are shown.

It turns out that the intrinsic attenuation between the source and receiver, expressed in terms of a
guality factor, is by far the most important factor in determining the high-frequency roll-off of a seismic
spectrum, much more important than the Brune corner frequency.

It is important to appreciate the fact that real event spectra have significant scatter, the scaling problem
inherent in comparing different measures of earthquake magnitude and the role of trigger algorithms.

Given this working model and an understanding of how to use it, it becomes possible to make
estimates of the minimum magnitude at which 50% of the events are likely to be detected at a given
epicentral distance. Conversely, given such a model and a required minimum event size which must be
detected with 50% probability, one can state the required station spacing.

In particular it is shown that a broadband seismometer in the class of the Nanometrics Trillium Compact
has an intrinsic detection limit of about M-2 at 2 km hypocentral distance. In contrast, a typical low-gain
geophone has an intrinsic detection limit of about M-1 at the same hypocentral distance.

Introduction

The question of detection limits bears heavily on the design of microseismic monitoring arrays. These
arrays are essential for ensuring the safety and efficiency of emerging technologies which involve
injecting materials underground at high pressure, such as hydraulic fracturing, geothermal power
generation and carbon sequestration. The number of instruments required and their optimal separation
depends on the observed site noise, the sensor self-noise, and the minimum event size which must be
detected.

As it is colloquially known, the Richter magnitude is a relatively widespread way of understanding the
size of events. It is therefore is useful for communicating seismic and other risks related to various new
technologies such as hydraulic fracturing, geothermal power and carbon sequestration.

The number of events which a microseismic monitoring network can detect in a given time frame is
crucial, because it will determine the quality of picture which can be generated of the stimulated volume
and because more events will provide a better basis for a frequency of recurrence versus magnitude
scaling law. This means the smaller events which can be detected the better. So the question is, then:
what is the smallest event a given network can detect? Fundamentally, therefore, there is a need for
reliable estimates of ground motion as a function of frequency, magnitude and epicentral distance.
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Theory

Many authors, recently for example Goertz (2011) and Eaton (2011), refer to the model for the spectra
of seismic events developed by Brune (1970). It is not a trivial matter to reconcile these spectra with
actual ground motion, however. Reasonable estimates must be made of the various parameters in the
amplitude spectrum and then a means is needed for estimating the spectrum for real events.

Amplitude Spectra
The model developed by Brune (1970) gives the displacement spectrum as:
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This is the Fourier transform with respect to time of the displacement of some point in the far field vs.
time. Because computing the Fourier transform involves multiplying the displacement by an increment
of time as the function is integrated over time, the units are m-s, not m, as one might expect for a
function called a displacement spectrum.

The low-frequency plateau £, is proportional to the seismic moment M,. For an inhomogeneous
medium the relationship between the two is given by Aki and Richards (2002):
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The various parameters in this equation are:

e The phase velocities of the media near the source and receiver, denoted by V. and V;. The
phase in question can be either the P-wave or the S-wave, but we will concentrate primarily on
the S-waves. For a receiver at the surface the velocity will typically be significantly lower than
that at the source, which is why we’re using the approximation for inhomogeneous media.

e The densities of the media near the source and receiver, denoted by p, and p,.. The density can
be approximated for a broad range of lithology given the S-wave velocity using the rule
proposed by Gardner (1974),

0o

p= 0.23‘80'25,

where the S-wave velocity S is expressed in feet/second and the resulting density is expressed
in g/cm®. This is the approach used in this article.

e The factor 1 < F; < 2 accounts for the effect of the proximity of the receiver to the surface. It
should be setto F; = 2 for sensors installed at the surface.

e The factor S, accounts for the radiation pattern from the fault. Although the radiation patterns
are different for P- and S- waves, in both cases the amplitude as a function of azimuth is a
rectified sine wave, so we will use the average of the radiation pattern and set S, = 2/m .

e The hypocentral distance r,, accounts for the effects of geometrical spreading in three
dimensions. It must take into account both the epicentral distance and the depth for nearby
events.

e The seismic moment M, relates directly to the physical dimensions of the fault and to the
measured magnitude in the far field, as described in what follows.

The seismic moment is defined as the product of the fault area, 4, the average total slippage, u, and
the shear modulus of the rocks involved, u.

MO = /,lﬁA
Since seismic moment is a measure of the energy released by an earthquake, the units are joules. Of

course we don’t know the dimensions or other characteristics of the event a priori but we do know its
relationship to the moment magnitude.
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Earthquake magnitudes can be estimated using a variety of methods. Many of these methods, such as
the original local magnitude M; of Richter and Gutenberg and the teleseismic surface-wave magnitude
M, saturate at large magnitudes. That is, past a certain magnitude, for these measures of magnitude,
even though the energy released increases, the measured magnitude does not. At the same time, all of
these magnitude estimates are really trying to estimate the energy released by the earthquake. They
can therefore be used somewhat interchangeably, because all of the magnitude estimates are scaled to
be equivalent to M, in the range where it is not saturating. See Choy and Boatwright (2009).

The energy released by an earthquake of moment magnitude My, is
3
M, = 10zMw+9
The corner frequency for a circular fault, according to Brune (1970) can be estimated using:
A
¢ 2T RO

Where the radius of the fault R, can be estimated from the magnitude of the seismic moment, M,, and
the stress drop g, according to Abercrombie (1995):

R _3 7MO
o~ 160'0

According to Brune (1970) and others, stress drop is a remarkably constant quantity, at least for the
larger events they were studying.

At high frequencies the spectrum decays as 1/f2. Aki and Richards (2002) argue that this can be
understood as being a product of the effect of the finite length over which the fault propagates and the
finite rise time of the slip. However the classic Brune spectrum was generalized by Abercrombie (1995)
in an attempt to explore the possibility of the high-frequency roll-off having different slopes, n, and the
corner frequency having different degrees of sharpness, y, and to include the effect of attenuation via a
guality factor, Q:

TfTh
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The quality factor turns out to be critically important in determining the roll-off of the spectra at high
frequencies.

It is important to note that this model is particular to the strike-slip mechanism which is dominant in
tectonic earthquakes. Implosions and explosions, for example, are characterised not by shear rupture
but by sudden compression or tension, produce only P-waves, and have higher corner frequencies.
Volcanic earthquakes have their own set of source mechanisms in which magma flows play a role.
Different estimates of magnitude require different scaling factors for different source mechanisms. The
bottom line is that there may be source mechanisms unique to geothermal power generation or
hydraulic fracturing, producing source spectra distinct from those of tectonic earthquakes.

Octave Band-Passed Peak Spectra

In the course of investigating the relative utility of accelerometers and velocity meters for the
measurement of strong motion due to earthquakes, Clinton and Heaton (2002) assembled an
earthquake database and used octave-wide band-pass filters to determine the peak amplitudes as a
function of frequency for a variety of magnitudes and epicentral distances. This method avoids the
problem of having to pick a duration over which to compute a power spectrum.

Figure 1 graphically illustrates the methodology of Clinton and Heaton, for the case of events of
magnitude M3.5 at an epicentral distance of 100 km. Similar curves were developed and published for
M1.5 to M7+ and epicentral distances of 10 km, 100 km and 3000 km.
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Although the spectra of Clinton and Heaton were developed for comparison to clip levels, they are just
as useful for comparison to noise floors, because the problem of triggering events boils down to
detecting a peak amplitude, typically computed as a short-term average, with respect to the RMS or
long-term average of the background noise.

Noting the scatter in Figure 1, the event spectrum clearly approximates the median amplitudes for a
given size of event as a function of frequency. Half of the time, an event of the given magnitude will
produce larger amplitudes, and half the time the amplitudes will be smaller.
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Figure 1: Method of Obtaining Median Power Spectra
This figure is reprinted from Clinton and Heaton (2002), Figure 4. The caption in the original reads, in part: “Data
scatter and geometric mean for M3.5 at 100 km. The crosses are the data points, and their geometric mean is
represented by the thick dash-dotted line.”

Aki and Richards (2002) show that the maximum amplitude of a wavelet can be approximated by:

Xmax (@) = 2|X(@)|(fy — f1)
Where w is the angular frequency at the center of the band-pass filter bounded by the frequencies f;
and f,,.

We will choose relative bandwidth as a fraction of the center frequency of the band, so that
xmax(f) = 2|X(f)|kRBWf

In the case of displacement spectra, this transformation takes the units from m-s back to m.
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Finally, for comparison units of acceleration or velocity, we use the simple relationships relating
amplitudes of sine waves:

V(w) = wD(w)
Alw) = oV (w)
These relations apply equally well to amplitude spectra or power spectra.

At low frequencies, the equivalent acceleration amplitude spectrum of an event should therefore have a
slope of 40 dB/ decade.

Comparison to Power Spectra
The noise floors of well-constructed seismometers are stationary. That is to say that the noise floor

doesn’t change with time so that although the noise is random, the power spectral density is constant
over time.

In order to compare an amplitude spectrum to a power spectrum, we use a relative bandwidth factor
krew time the frequency f to compute the RMS signal in a given band, and a crest factor k., t0
convert the resulting RMS signal into a peak amplitude.

Xmax(f) = kcrest\/ P(f)krewf

And since a displacement power spectrum will have units of m?Hz, the resulting amplitude is in m.
Since Clinton and Heaton chose octave band-pass filters, we will set the relative bandwidth factor to:

1 1
kegw = V2 — —==—
RBW \/Z \/i
According to Bormann (2009b) the probability distribution of a typical earthquake signal is Gaussian
and the peak amplitude of a band-passed Gaussian signal is related to the RMS value by:

T
kerest = E

At low frequencies, the equivalent acceleration PSD to the amplitude spectrum of an event should have
a slope of 50 dB/ decade.

Comparison of Modeled and Measured Spectra
We will follow Goertz (2011), since our ultimate interest is in deep sedimentary strata and set

e V,=3400m/s
e 7. =3060 m/s

Goertz (2011) uses a quality factor of 150. While it is beyond the scope of this paper to do an extensive
survey, this seems like a rather high value for events at close proximity to a surface receiver. For
example Eaton (2011) reports quality factors between 22.5 and 25. For the comparison with Clinton
and Heaton the best fit with the measured spectra was obtained when the quality factor was varied
linearly from 75 to 100 for the M6.5 to M1.5 event spectra.

Similarly Goertz chooses a stress drop of 10 MPa, which is significantly higher than the value of 1 MPa
which Brune found representative. Good agreement between model and measurement was obtained
for a stress drop of 3 MPa.

The seismic moment released by a M1.5 event is 1.8x10™ J, the source radius is approximately 30 m
and the Brune corner frequency is 40 Hz. The resulting spectra are compared with the spectra
published by Clinton and Heaton (2002) for 10 km epicentral distance in Figure 2.

GeoConvention 2012: Vision



20

20 4

A o [n]
a A~ ’ B A MB.5 at 10 km measured
40 4 i o 2 ——MB.5 at 10 km modeled
8 M5.5 at 10 km measured
[m] ME.5 at 10 km modeled
60 1 py A O O M4.5 at 10 km measured

——M4.5 at 10 km modeled
A & M3.5 at 10 km measured
| —I3.5 at 10 km modeled

-830 +

a o |
] A MZ2.5 at 10 km measured
-100 ~ © ——[2.5 at 10 km modeled
N o , © MA15 at 10 km measured
1

I ——1.5 at 10 km modeled
120 - t M0.5 at 10 km modeled
M-0.5 at 10 km modeled

140 4 M-1.5 at 10 km modeled

Peak Acceleration Amplitude in Octave Bandwidth (dB wrt m/s?

-160

-180 . . .
0.01 01 1 10 100 1000

Frequency (Hz)

Figure 2: Comparison of Model to Measurements for 10 km Epicentral Distance
Models assume V¢ = 3400 m/s, V,. = 3060 m/s, o, = 3 MPa and Q between 75 and 100.

With the fine-tuning mentioned, correspondence between measured and modeled spectra is excellent.
The most glaring anomaly is that the measured low-frequency asymptotes for M4.5 and M5.5 tend to
be lower than the model predicts while those for M1.5, M2.5 and M3.5 events tend to be higher. Ground
motion amplitudes at low frequencies should surely scale strictly with magnitude. It is possible that the
events selected for the database by Clinton and Heaton have some built-in bias relating to their size.
Perhaps one set of events was obtained primarily from one instrumentation network and/or originating
in one set of types of faults while the other set of events was obtained from another.

Having noted this anomaly, the slope of the low-frequency asymptote is correct, and although data on
the shape of the roll-off at high frequency does not extend to frequencies high enough to be sure, there
is reasonable agreement with the available data.

A success of the model is the predicted flattening of the spectra in the mid-band at the largest
magnitude. At these magnitudes the Brune spectra corner frequencies are quite low so they are easily
separated from the roll-off at high frequencies due to attenuation.

Conversely, for the smallest events, the Brune corner is at a higher frequency then the corner due to
attenuation, so the latter is much more important in determining what frequencies contain the most
seismic energy. This is significant because it means that in estimating the spectra of small events it is
the attenuation which matters, not the stress drop.
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Figure 3: Comparison of Model to Measurements for 100 km Epicentral Distance
Models assume V¢ = 3900 m/s, V,. = 3060 m/s, o = 1 MPa and Q = 600.

For epicentral distances on the order of 100 km, the model is compared to Clinton and Heaton’s
measurements in Figure 3. The shear wave velocity at the receiver was chosen to be 3900 m/s, and
the quality factor was set to 600, following the PREM 1D model of the earth for 15-24 km depth, as per
Bormann (2009c). These parameters fit the data much better than those used for 10 km epicentral

distances, and make sense since the events are likely to have deeper foci.
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Figure 4: Comparison of Model to Measurements for 3000 km Epicentral Distance
Models assume V¢ = 4500 m/s, V,. = 3060 m/s, g, = 1 MPa and Q = 600.

For epicentral distances on the order of 3000 km, the model is compared to Clinton and Heaton’s
measurements in Figure 4. The shear wave velocity at the receiver was chosen to be 4500 m/s, and
the quality factor was set to 600, approximating the PREM 1D model of the earth for 24-80 km depth,
as per Bormann (2009c). Note the shift to lower frequencies in comparison with the previous two
figures.

The fit is reasonable for very long periods, but is poor above 1 Hz. The number of events available to
Clinton and Heaton was admittedly very small for the se teleseismic events, so that may be a factor.
Another possibility is that surface waves have become dominant at these huge epicentral distances and
frequencies, because they don’t decay as rapidly with distance as body waves.
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Figure 5: Detection Thresholds for Small Events
Models assume V¢ = 3400 m/s, V,. = 3060 m/s, o, = 3 MPa and Q = 50.

Figure 5 shows the extrapolation of this same model of small events to smaller magnitudes and closer
epicentral distances. Note the difference in the vertical axis units, resulting in a different slope for the
low-frequency asymptotes. A hypocentral distance of 2 km was chosen as representative for a gas-
bearing shale hydraulic fracturing operation. The quality factor was fixed at 50 for all events shown, but
would in practice need to be more exactly characterised for a given microseismic monitoring network
deployment. The stress drop was set at 1 MPa, but it hardly matters for such small events.

Notwithstanding excess ground motion due to site noise, we can conclude that a Trillium Compact
should be able to detect an M-2 event more than 50% of the time, but not an M-3 event at this range. A
high-gain geophone will similarly be able to detect an M-2 event significantly less than 50% of the time,
and a low-gain geophone will be able to detect M-1 events, but not M-2 events.

Included in Figure 5 are the NLNM and NHNM, models of earth noise at typical good sites. In practice,
a seismometer, properly installed just about anywhere on Earth, will record site noise spectra between
these two lines. The site has to be quite good, typically on bedrock and/or underground, to approach
the NLNM. Although further improvement is possible through stacking in practice the detection limits
outlined in the previous paragraph are going to tend to be optimistic.

Pre-injection site surveys are clearly going to be indispensable. First, it is critical to determine levels of
site noise and re-site instruments as needed to obtain the lowest possible site noise. Second, such a
survey allows the surveyor to ascertain the appropriate phase velocities and quality factors to use for
modeling of small events. With such data in hand it becomes possible to determine the detection
threshold of a given network and the minimum required station spacing to detect events of a given size.
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Conclusions

This poster develops and documents a detailed model like that of Brune (1970) and validates it by
comparison with the work Clinton and Heaton (2002). The same model is then used to generate event
spectra for smaller, closer events, appropriate for assessing the detection limit of a hypothetical
seismograph network with low site noise. A network composed of Trillium Compacts for example, is
capable of detecting M-2 events at 2 km hypocentral distance, for example.

To assess the detection limit of a real network or to carefully set the optimum number and spacing of
seismometers, a preliminary survey is indispensable. Such a survey allows the site noise to be
assessed and sensors relocated on the surface or below ground as needed to achieve stated design
goals. It furthermore permits measurement of the quality factor which is so crucial to the high-frequency
roll-off of the event spectra, as well as the relevant phase velocities.
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