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Summary 

Two methods have recently been published for carrying out nonstationary spectral broadening (and 
narrowing) of PS data after it has been mapped into the PP time domain.  We present a study which 
investigates these two papers by Bansal & Matheney (2010) and by Gaiser (2011) (see also Gaiser et 
al., 2011a,b).   

We find that the two approaches differ not only in their purposes, but also in their method of PS-to-PP 
time mapping, their proposed spectral corrections, and their methods for applying those corrections.  
Both papers make useful contributions to this field, and we try to add some clarification of fundamental 
resolution issues and illustrate our points with simple synthetic seismograms. 

 

Introduction 

A very common observation, and shortcoming, in converted-wave data (also called C-wave and/or PS 
data) is its poor resolution compared to PP data. Even after squeezing PS data from PS to PP time, the 
frequency content of the PS data is typically not as high as P-wave data (except for some important 
shallow reflector, near-surface exceptions). In the absence of attenuation due to Qp and Qs, we know 
that shear waves should provide better resolution than P-waves because the lower S-velocities have 
smaller spatial wavelengths (for the same temporal frequency) than the P-wavelengths. The fact that 
the highest frequencies in the PS data are not observed to be as high as in the PP data has typically 
been attributed to the fact that Qs has a more severe attenuative effect on the shear waves than the 
effect of Qp on the P-waves. 

Recently Bansal & Matheney (2010) (hereafter referred to as Paper I) published a method for 
equalizing the wavelets in PS data after squeezing the time coordinate from PS time to PP time in order 
the prepare the data for inversion since a time-stationary wavelet is assumed to exist by inversion 
algorithms. Their method can generate some enhancement of the frequency content of the PS data 
after it is squeezed to PP time but this is not surprising since it involves a controlled form of time-
varying spectral whitening which is an industry-standard method of trying to extract as much resolution 
out of data as possible by whitening its amplitude spectrum. 

Even more recently Gaiser (2011) (hereafter referred to as Paper II) has published material where he 
suggests that we have all been underestimating the true resolving power of a lot of PS data. According 
to Gaiser, we have not been achieving the true resolution of the PS data after squeezing it to PP time 
(especially land PS data) because we have not been recognizing that the “wavelengths of P- and S-
waves must match in order to sample reflectivity in an equivalent manner” (Gaiser, 2011). In contrast to 
Bansal and Matheney’s conventional method of whitening existing temporal frequencies in the PS data, 
Gaiser’s method involves an unorthodox mapping of the original frequencies in the data to higher, 
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previously non-existent, frequencies. If Gaiser’s point is correct, it would certainly be important since it 
would provide an instant method of getting better resolution from many PS datasets.  

The potential improvement in resolution from Gaiser’s method motivated us to examine Gaiser’s 
argument in detail. The analysis presented here of some basic concepts of domain mapping, resolution, 
and wavelength preservation leads us to question some of Gaiser’s statements and show that Bansal & 
Matheney’s approach is basically sound.  

We start our analysis by describing two methods of mapping data from PS time to PP time. One 
method depends on interval velocities and the other depends on average velocities. Confusion between 
Bansal and Matheney’s method and Gaiser’s method starts here because, contrary to what Gaiser 
(2011) states, the PS to PP time conversion can depend either on interval or average velocity ratio. We 
will find that doing the PS to PP time conversion with locally constant average velocity ratios causes 
confounding wavelet distortions that do not occur when doing the conversion with the true average 
velocity ratios or with interval velocity ratios.  

 

Two methods of squeezing PS data from PS time to PP time 

There are at least two methods that can be used to map PS data from PS time to PP time. One of them 
constructs the squeezed PS trace using the interval Vp/Vs ratio, γint, and the other constructs the 
squeezed PS trace using a Vp/Vs ratio that is averaged from the surface, γ0. The interval Vp/Vs-based 
method uses the factor 2/(1+γint) to do the mapping sample by sample within each constant interval. 
The average Vp/Vs-based method uses the factor 2/(1+γ0) to do the mapping sample by sample down 
the entire trace. The factor 2/(1+γ) is the ratio of traveltimes, tPP/tPS, either across a region of constant 
γint, in the case of the interval Vp/Vs-based method, or averaged from the surface, in the case of the 
average Vp/Vs-based method.  

In the case of the interval Vp/Vs-based method, let us assume that the γint model is blocky: i.e. Vp/Vs is 
constant within a block of time samples. So we start with a set of γint values that are used to map time 
samples within blocks of the original PS trace to blocks of samples in the squeezed PS trace in the 
following way. Beginning at the top, the squeezed PS trace is constructed interval by interval by first 
squeezing the sample interval, ΔtPS, of the top interval of the original PS trace by a constant factor, 
2/(1+γint), interpolating the squeezed samples within that interval to the desired ΔtPP of the output trace, 
and then placing those interpolated samples at the top of the squeezed PS trace. This procedure would 
be repeated for the samples within the second constant γint interval and those squeezed and 
interpolated samples would be pasted below the top layer of the squeezed PS trace. And then the third 
layer would be squeezed, interpolated and pasted below the second layer of samples, and so on to the 
bottom of the trace. 

In the case of the average Vp/Vs-based squeezing method, we start with a γ0 model which will typically 
vary sample by sample down the trace (except for the top layer if the underlying γint model is blocky). 
Therefore, the squeeze factor 2/(1+γ0) defines a point-by-point mapping of samples in the original PS 
trace to samples in the squeezed PS trace. Since γ0 typically varies sample by sample, then the 
amount of squeezing varies sample by sample as well. Interpolation will be required to do the mapping 
from constant ΔtPS samples in the original trace to constant ΔtPP samples in the squeezed PS trace. 

Notice that the method of obtaining the γint or γ0 models has not been described so far. It is important to 
distinguish the method of obtaining the Vp/Vs model from the method of performing PS time to PP time 
mapping. Gaiser (1996) describes a cross-correlation based method that naturally yields a γ0 model, 
but he also describes a Dix-inversion method of converting the γ0 values to a γint model. So Gaiser 
could use either method described above to do the PS time to PP time method, but his comments 
make it sound like he only uses the average Vp/Vs based method. Bansal & Matheney (2010) describe 
a method of registering PP-horizons to PS-horizons that naturally leads to a blocky γint model, and it 
sounds from their comments as if they have used this interval Vp/Vs model to do their PS time to PP 
mapping. But it would be a simple procedure to integrate Bansal & Matheney’s γint model to obtain a γ0 
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model and then do the mapping by the average Vp/Vs mapping method. The important point is that the 
method of mapping from PS to PP time does not need to be tied to the method of obtaining the Vp/Vs 
model.  

The two mapping methods are compared in Figure 1, which shows a simple model and the associated 

i and 0.  Also shown are a PP trace and a PS trace compressed to PP time by each of the methods 
described above.  It is clear that both methods result in identical wavelets that are compressed in time 
(higher frequency) relative to the PP wavelets, and that the arrival time of the events in PP time is 
correct.  Both methods also result in nonstationary wavelets. However, it is important to note that the 

wavelets are stationary within a constant-i interval, suggesting that their frequency bandwidth after 

compression is governed by i rather than 0. 

 

Figure 1: (a) Interval and average Vp/Vs values in depth for a simple model. The locations of four reflectors are 
indicated by symbols.  (b) A PP trace (black line), a PS trace compressed to PP time by a method that uses 

interval VP/VS, i (green line), and a PS trace compressed to PP time by a method that uses average VP/VS, 0 

(dashed red line). (c) Close-ups of each of the four events in (b). 

One point of particular interest is the asymmetric compressed wavelet of the second event.  This is an 

artifact of the discontinuity in i and in the derivative of 0, and should not be present.  One possible 

approach is to modify  so that it is constant in a region about each event.  This yields well-behaved 
wavelets as shown in Figure 2. 

However this procedure has an unintended consequence as well, namely that wavelets below the first 

layer possess a different frequency bandwidth when compressed by a locally constant 0, which we will 

denote    .  In fact they are somewhat narrower than before which makes it seem that using      would 
be a useful way to enhance resolution.  This is not the case, as we show in the next section, but first we 
will describe the wavelets in Figure 2 more precisely. 

If the original wavelet (in either PP or PS traces) is characterized by a dominant frequency of   , then, 

as shown in Appendix A, the dominant frequency of the PS wavelet squeezed to PP time using    (or 
   ) is           , while that of the wavelet squeezed using      is            or, for clarity,        
    . 
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Figure 2: (a) Interval and average Vp/Vs values in PS for the same model as in Figure 1, but with values 
interpolated between event locations in such a way that Vp/Vs values are approximately constant in a region 
around each event. The PS times of four reflections are indicated by symbols.  (b) A PP trace (black line), a PS 

trace compressed to PP time by a method that uses interval VP/VS, i (green line), and a PS trace compressed to 

PP time by a method that uses locally constant average VP/VS, 0c (red line). (c) Close-ups of each of the four 
events in (b). 

What is the importance of understanding how the PS-to-PP domain transformation is carried out?  We 
address this question in our next section. 

Wavelength = Resolution 

In the last section we showed that the way in which frequency varies with time in squeezed PS traces 
depends upon the manner in which the domain transformation is carried out.  This is important because 
frequency is related to wavelength, and wavelength is a fundamental measure of the resolving power of 

a wavefield.  The P- and S-wavefield wavelengths in layer i, iP and iS, have a clear physical meaning.  

We show in Appendix B that a useful definition of iPS for discussion of resolution is the harmonic 
average 

 1 / iPS  ≡  ( 1 /iP + 1 /iS ) / 2. (1) 

The significance of this result is that, as discussed in Gaiser (1996), resolution is fundamentally related 
to wavelength.  For instance if ViP / ViS = 2 for all layers then, before mapping from SS time to PP time, 
the SS signal will possess twice the resolving power of a PP signal with the same frequency bandwidth, 
because its wavelengths are half those of the PP wavefield. Thus if a PP signal can detect a layer of 
20m thickness, then an SS signal can detect a layer of 10m thickness, and a PS signal a layer of  
~13.3m thickness.   

After mapping to PP time the SS signal would have an effective velocity of ViP instead of ViS, by virtue 
of it having been shifted in time, and the frequency of its time trace would now be 2 f0.  The doubling of 
the frequency does not mean however that its resolution has been doubled from what it was before the 

mapping, for the fact that its wavelength, ( 2 ViS ) / ( 2 f0 ) = iS, is unchanged means that its resolution 
has been preserved across the domain mapping.  What the double frequency does tell us is that the 
resolution is still double that of the PP signal, for this can now be discerned from frequencies as well as 
wavelengths because the signals are now in the same time domain. The essential idea to take away 
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from this is that resolution is fundamentally determined by wavelength, and this resolution can be 
preserved through various domain transformations, but it cannot be fundamentally increased once 
acquisition is complete. 

One of the valuable points made in Paper II is that the frequency of domain-transformed PS wavelets 
should be corrected in such a way that wavelengths are correct.  We would say that a wavelength is 
correct if it maintains the true resolving power of the original PS signal.  After transforming to PP time 
the effective velocities of the PS signals become equal to P-wave velocities, and if the transformation 

employs     , then the frequency becomes f0 (1+0c) / 2.  Thus the implied wavelength for a PS event 

from the bottom of interval i is squeezed = 2 ViP / [f0 (1+0c) ].  As pointed out in Paper II, this is not the 
correct wavelength, and Paper II thus proposes a correction. We point out here though that if the 

transformation employs either 0 or i then the frequency becomes f0 (1+i) / 2. Thus the implied 

wavelength is squeezed = 2 ViP / [f0 (1+i) ] = 2 / [f0 (1 / ViP +1 / ViS) ], which is precisely the wavelength 
that correctly describes the PS signal’s resolution.  

In Figure 2 the result of squeezing with      produced narrower wavelets than for 0 or i.  This would 

perhaps make the use of      tempting in this case.  To illustrate the danger of this though, we show in 
Figure 3 the effect of each transformation on tuned wavelets.  Figure 3a is similar to the third event in 
Figure 2c, but the single event has been replaced by two closely spaced wavelets of opposite sign.  

This is a typical model for the important case of an embedded thin layer.  In Figure 3b we show the i -
squeezed PS signal along with the “ideal” squeezed wavelet with the same frequency, i.e., the correct 

reflectivity has been convolved with a wavelet whose dominant frequency is (1 + i)/2 times that of the 
original PS signal.  We see that the two signals are identical, showing that the resolving power of the 
original PS signal has been preserved.  In Figure 3c we show the     -squeezed PS signal along with 
its “ideal” squeezed wavelet i.e., the correct reflectivity convolved with a wavelet whose dominant 

frequency is (1 + 0)/2 times that of the original PS signal.  Now we see that the two signals differ 
significantly and that the underlying reflectivity has been distorted by the squeezing process, which thus 
has not preserved the resolving power of the original PS signal.   

 
Figure 3: a) This panel is similar to the third event in Figure 2c, but the single event has been replaced by a pair of 
tuned events of opposite sign, located at 0.3367 s and 0.3567 s.  b) The green line from Part a displayed together 
with a convolution of the reflectivity with a Ricker wavelet in which the dominant frequency has been multiplied by 

2/(1+i).  Their exact coincidence shows that reflectivity has been preserved in squeezing with i.  c) The red line 
from Part a displayed together with a convolution of the reflectivity with a Ricker wavelet in which the dominant 
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frequency has been multiplied by 2/(1+0). The difference between these lines shows that reflectivity has not been 

preserved in squeezing with 0c. 

Thus a distinct advantage of performing PS-to-PP domain transforms with i, as in Paper I, or with 0, is 
that the wavelengths automatically assume their correct values, as demonstrated in Figure 3.  Then no 
correction is necessary.   

 

Correction factors 

There are of course situations when corrections are required.  In the case of Paper I, it is necessary to 
obtain a stationary wavelet from the nonstationary squeezed wavelet.  One might also wish to perform 

the PS-to-PP time conversion using 0c as part of the correlation method of Gaiser (1996).  In this latter 
case, an important consequence of the analysis above is that to correct the wavelet one would need to 

apply the frequency scaling factor ( 1 + i ) / ( 1 + 0 ).  This differs from the suggested correction factor 

of Paper II, 2 i / (1+0).  This latter factor adjusts the frequency such that iPS = iS.  While this may 
seem plausible in light of the upcoming PS signal being an S-wave, it nonetheless violates 
“conservation of resolution” by attempting to imbue the PS signal with the resolving power of an SS 

signal.  The correction factor suggested here would restore the wavelength of a 0c-squeezed PS signal 
back to its original value. 

Regardless of the differences between the various corrections described above, the one thing they all 
have in common is that they are nonstationary, and will thus require a nonstationary wavelet correction 
method.  Paper I proposes a nonstationary filter (Margrave, 1998), while Paper II proposes a very 
different direct mapping, but discussion of these is beyond the scope of this paper.  

 

Conclusions 

We have demonstrated that wavelength and resolution are preserved for a PS signal compressed to 
PP time if the resulting wavelet has dominant frequency scaled by          relative to the frequency 
of the original wavelet.  This condition is fulfilled for an underlying blocky model when PS-to-PP time 
mapping is carried out using interval Vp/Vs ratios or exact average Vp/Vs ratios.  If one uses locally 
constant average Vp/Vs ratios then the frequency is scaled incorrectly and wavelengths are not 
preserved.  Although the incorrect scaling may in some cases appear to increase resolution, we have 
shown that for tuned wavelets it can result in a distortion of the underlying reflectivity model. 
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Appendix A: Bandwidths resulting from mapping with average Vp/Vs 

Consider a PS trace wavelet centered at time    and with zero-crossings at       and      . (All 
times are in the PS domain unless indicated otherwise.) The time difference between these zero-

crossings,    , is in general inversely proportional to the bandwidth of the wavelet.  What is the 
difference between compressing this wavelet to PP time with a locally constant average velocity ratio, 

   , or the true average velocity ratio,   ? 

In the first case, because                   , the mapped time difference is given by 

 

                      
        

            
 

        

            
 

 

         
       

 

This shows that the bandwidth in the mapped wavelet will be scaled by [         ]   [        ]  . 

In the second case the mapped time difference is given by 
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Substituting this expression for           into Equation A1 yields 

 

        

         
   

       
         

    

 
        

         
   

       
         

    

  

 

which, after expanding to linear order in    , reduces to 

                      
 

    

              

Thus using the true    to map from PS time to PP time gives the same mapping as mapping with   , 
and results in a frequency bandwidth scaled by         . 
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Appendix B: Definition of effective wavelength for PS wavefield 

Suppose that PP, PS, and SS signals with the same dominant frequency, f0, are all received from a pair 
of reflectors separated by a distance z.  It is straightforward to calculate the time difference between the 
two signals for each wavefield, namely  

tPP = 2z / ViP, 

tPS = z / ViP + z / ViS, 

tSS = 2z / ViS. 

Now suppose that, for the given bandwidth, two signals in time can be distinguished if separated by 

time T.  By setting tij = T we can calculate the minimum z that can be distinguished by each wavefield, 
namely  

zmin,PP = T ViP  / 2, 

zmin,PS = T / ( 1 / ViP + 1 / ViS ), 

zmin,SS = T ViS  / 2. 

We know that P- and S-wavelengths in this layer are iP = ViP / f0 and iS = ViS / f0, so we can also write 

 zmin,PP = (T f0 / 2) iP, (B1) 

 zmin,SS = (T f0 / 2) iS. (B2) 

We see that in both B1 and B2 the minimum thickness is related to the wavelength by the same 
proportionality constant, (T f0 / 2). Various authors have defined this quantity in different ways, but 
typically it is in the range 0.1-0.3 (Meier & Lee, 2009).  We are not concerned with its numerical value 
here, but if we wish to define an effective PS “wavelength” which contains information about the 
resolving power of a PS wave, we would use the same proportionality factor, (T f0 / 2), and write 

 1 / iPS = (T f0 / 2) / zmin,PS = f0 ( 1 / ViP + 1 / ViS ) / 2 = ( 1 /iP + 1 /iS ) / 2 (B3) 

so that an effective iPS is the harmonic average of P- and S-wavelengths, as stated in Equation 1. 

This not intended to suggest that iPS corresponds to an actual physical wavelength, only that it plays 

an analogous role to iP and iS in describing the resolving power of a PS signal. 

 


