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Summary  

‘Archie’s law’ has been the basis for virtually all saturation equations used in the petroleum industry for 
the past seventy years, however it has only an empirical foundation and its parameters are only 
qualitatively interpretable. A consideration of the basic physics of electrical conduction, however, leads 
to a simple, physically interpretable description of simple porous media of the type for which ‘Archie’s 
Law’ was formulated.  

 

Introduction 

‘Archie’s law’ is used throughout the petroleum industry as the basis of a quantitative method for 
estimating the hydrocarbon content of reservoirs. It is referenced and used in a great many published 
papers and books. Despite being regarded by many as a ‘law’ of nature, ‘Archie’s law’ or ‘Archie’s 
equation’ has only an empirical origin reflecting the curve fitting methods generally available in the early 
1940s. Attempts have been made to derive ‘Archie’s law’ from basic physical principles with little 
success. Rather than attempt to derive ‘Archie’s law’, it is more fruitful to simply obtain a suitable 
description of the conductivity of porous materials using a simple analysis of the problem and the 
physics of conduction.  

 

Conductivity of porous media 

In the 1942 paper in which Archie gave the results of his empirical study, he defined the “formation 
resistivity factor” as the ratio of the resistivity of a brine-saturated rock to the resistivity of the saturating 

brine, R
0
/R

w
. By dividing out the brine resistivity, the formation resistivity factor F becomes a property 

solely of the brine-saturated rock, independent of the resistivity of the brine in the rock. Further 
consideration shows that there are only two additional properties of porous media that determine its 
conductivity: the pore volume and the pore geometry. One can carry Archie’s approach one step 
beyond dividing out the effect of the brine conductivity by also dividing out the effect of brine volume 
leaving only the effect of the pore geometry. This pore-geometric effect can be referred to as the 
“geometric factor” symbolized as E

0
. Effectively, the formation factor is separated into its two 

components, porosity and geometric factor. Separating the two components is important since, in 
general porous media, the two can be varied independently and many combinations of porosity and 
geometric factor give the same formation resistivity factor. This non-uniqueness of the formation 
resistivity factor makes interpretation of porous media data difficult and has resulted in much confusion 
in discussions and in the literature.  

 

The separation of the formation resistivity factor into its component parts results in a simple description 
of the conductivity of brine-saturated porous media, 

 

 C
0
 = C

w
  E

0
, (1) 
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where C
0
 is the conductivity of a brine-saturated porous medium,  and E

0
 are its porosity and 

geometric factor, respectively, and C
w
 is the brine conductivity.  

 

A comparable equation for the conductivity of a partially brine saturated porous medium can be written 
by correcting the pore volume and pore geometry for the change in volume and geometry of the water 

in the medium due to its partial removal. The corrected brine volume is S
w
 and the corrected 

geometric factor is e
t
E

0
, where S

w
 is the  fraction of the pore volume containing brine and e

t
 is the 

fractional change in E
0
 resulting from the change in brine geometry due to desaturation. The 

conductivity equation for a partially brine-saturated porous medium C
t
 is 

 C
t
 = C

w
 S

w
 e

t
E

0
. (2) 

 

S
w
 is the brine content of the partially brine-saturated medium and e

t
E

0
 is its geometric factor. 

 

The pore-geometric factor E
0
 can be understood explicitly by considering how electric currents flow 

through a porous medium. For simplicity of explanation I will consider a simple 2D porous medium, 
figure 1. 

 

 

The circular grains in figure 1 are non-conductive; the saturating brine (blue) is highly conductive. 
Figure 2 shows the same medium in an electric field E oriented parallel to the horizontal axis. The 
electric field gradient can be determined by solving Laplace’s equation. The solution for the pore 
geometry of figure 1 is shown in figure 2 as equi-potential surfaces which are depicted as black 
vertically oriented curves which can be thought of as electrical potential contour lines.  

 

Current streamlines (red curves, figure 2) are always perpendicular to the equi-potential surfaces. If a 
uniform current is injected at the pore throat on the left, it flows down the potential gradient. As the 
current approaches the middle of the pore, it spreads out due to the curvature of the equi-potential 
surfaces. The result is a non-uniform current density distribution. In this illustration, the same amount of 
current is contained between each pair of streamlines. The current density is reflected in the spacing 
between streamlines. From the middle of the pore, the current density decreases vertically in both 
directions. The highest current density is in the pore throats and in the center on the pores between 
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Figure 1. Simple brine-saturated 2D 

porous medium.

Figure 2. Same medium as in figure 1 in an

electric field E. Vertically oriented black curves

are equi-potential surfaces of the electric field 

gradient. Red curves are the current streamlines.
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pore throats. The total amount of current is determined by the cross-sectional area of the smallest (or 
limiting) pore throats.  

 

The pore geometric factor E
0
 can now be understood explicitly in terms of the non-uniform current 

density distribution observed in porous media and the cross-sectional area of the limiting constrictions 
between pores. Solving equation 1 for E

0
 gives 

 

 E
0
 = C

0
 / (C

w
 ) (3) 

 

The numerator of equation 3 is simply the conductivity of the porous material. The denominator is the 
result of normalizing the porous medium conductivity to the brine conductivity (Archie’s formation factor) 
and the porosity. The denominator is also has the form of the conductivity of a thick-walled tube with 
the same porosity and brine conductivity as the porous medium. Pictorially, equation 3 is 

 

 

The denominator of equation 3 and of figure 3 is the porous material with the pore geometry removed 
leaving a straight thick-walled tube. Such a tube has the maximum conductivity for the combination of 
brine conductivity, porosity and external dimensions of the porous material. E

0
 clearly gives the effect of 

the pore geometry of the porous medium on conductivity. The magnitude of E
0
 is controlled by the 

current density distribution and the size of limiting constrictions.  

 

E
0
 can also be considered as the electrical efficiency of the pore system. The numerator of equation 3 

expresses the degree to which the brine in the porous material conducts. The denominator expresses 
how well the brine could conduct if it had the tubular configuration for optimum conduction. For example 
a porous medium with E

0
 = 0.30 means that the brine in the material conducts with only 30% efficiency 

of that which it is capable. This is comparable to stating that only about 30% of the brine in the pore 
space is effectively conducting electricity, 70% of the brine does not contribute significantly to the 
conductivity of the porous material. . 

 

Conclusions 

The complications that result from trying to interpret Archie’s empirical equation can be avoided by 
reconsidering the problem of describing the conductivity of porous materials. Normalizing the 
conductivity of a porous material to both brine conductivity and porosity separates volumetric, 
geometric and compositional effects and allows one to investigate them separately. Archie’s formation 
factor is ambiguous since it is the product of pore volumetric (porosity) and pore geometric (geometric 
factor) effects leading to difficulties in interpreting the parameters of Archie’s equation. Separating the 

E0 =

Grain

C0 Cw

Figure 3. A pictorial representation of equation 3. E0 is due to the non-uniform current density distribution 

and limiting constrictions resulting in conductivity C0 as compared (by ratio) to an equivalent tube with the same 

dimensions, brine and porosity, Cw 
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volumetric and geometric conduction effects gives greater and more explicit interpretive capability. The 
pore-geometric factor E

0
 can be explicitly understood in terms of the pore geometry determining the 

current density distribution in a given pore system and the constrictions that limit the total current. 


